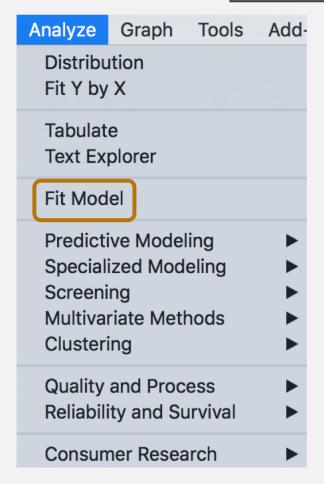
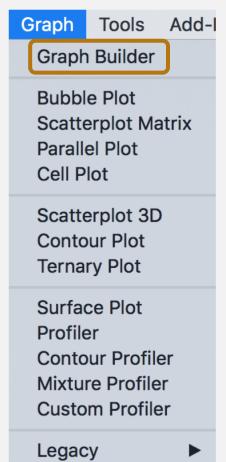
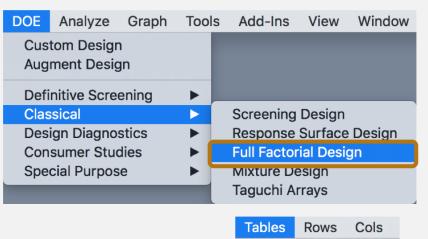
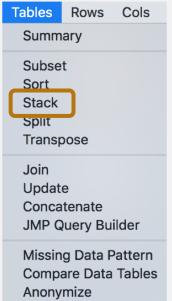
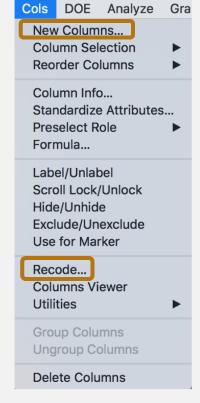

JMP FOR BIOSTATISTICS AND THE HEALTH AND LIFE SCIENCES

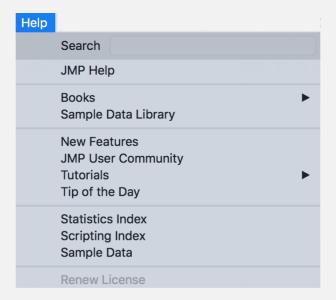

We are talking about: how to use the tools and techniques commonly needed by researchers, practitioners, professors, and students in biostatistics and the health and life sciences fields.


- ANOVA and regression (including variable selection and penalized regression)
- mixed models (hierarchical/splitplot and repeated measures)
- survival analysis
- designed experiments



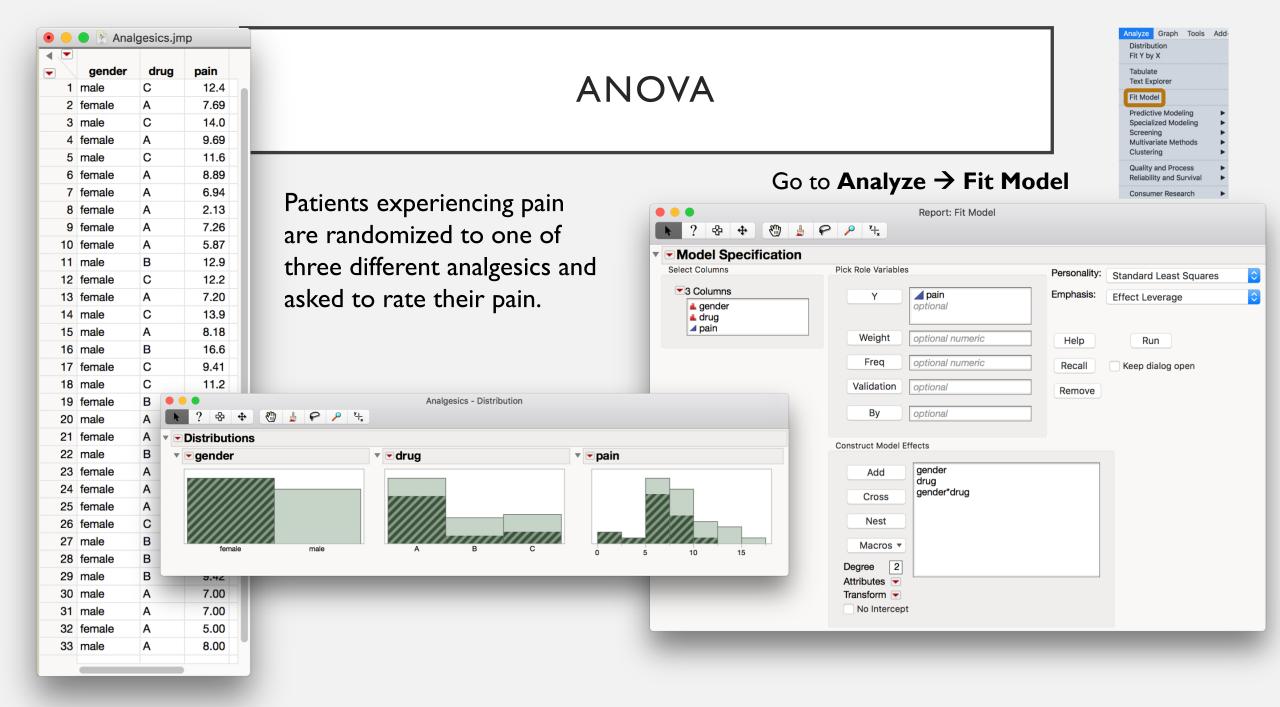

USING JMP



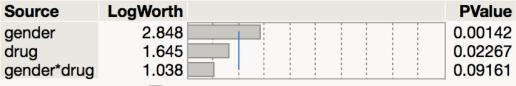


GETTING HELP IN JMP

- www.jmp.com/webinar → "Data Summary and Analysis"
- Other resources at www.jmp.com/teach
- Within JMP, the Help Menu (or the online help)

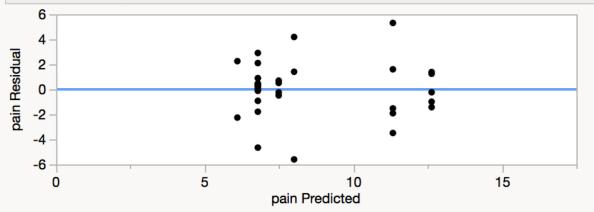


The JMP User Community! <u>community.jmp.com</u>


ANOVA AND REGRESSION

I. ANOVA to compare the pain ratings of men and women taking one of three different analgesics

2. Regression to predict how long an animal sleeps per night based on other characteristics



Effect Summary

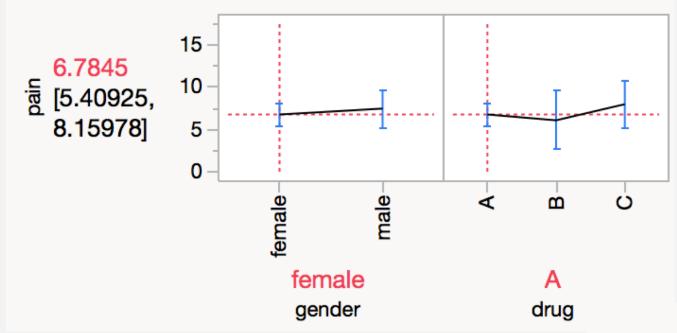
Remove Add Edit FDR

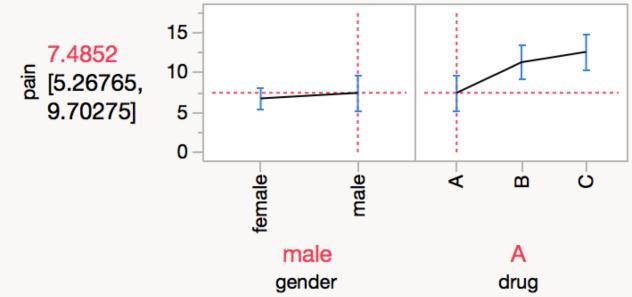
Residual by Predicted Plot

▼ Summary of Fit

0.534258
0.448009
2.41667
8.533515
33

▼ Analysis of Variance


Source	DF	Sum of Squares	Mean Square	F Ratio
Model	5	180.88537	36.1771	6.1944
Error	27	157.68799	5.8403	Prob > F
C. Total	32	338.57335		0.0006*


▼ Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	8.7207484	0.494984	17.62	<.0001*
gender[female]	-1.759652	0.494984	-3.55	0.0014*
drug[A]	-1.585892	0.616267	-2.57	0.0159*
drug[B]	-0.009982	0.765306	-0.01	0.9897
gender[female]*drug[A]	1.409308	0.616267	2.29	0.0303*
gender[female]*drug[B]	-0.856115	0.765306	-1.12	0.2731

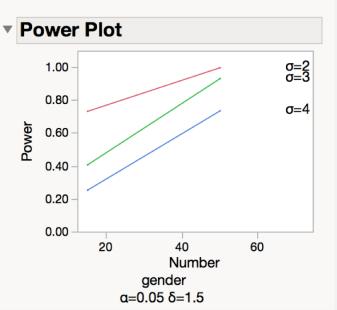
Effect Tests

			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
gender	1	1	73.808295	12.6378	0.0014*
drug	2	2	51.059196	4.3713	0.0227*
gender*drug	2	2	30.542763	2.6148	0.0916

You can also:

- Save residuals, predicted, confidence intervals, hats, Cook's D, leverage
- Look at profilers, like the interaction profiler or the surface profiler
- Get the indicator parameterization estimates
- Get sequential tests, multiple comparisons adjustments, estimates, contrasts, slices
- Look at retrospective power and sample size analyses

Least Squares Means Table Least Sq Mean **Std Error** Mean Level 6.961097 0.76856047 6.9111 female 10.480400 0.62398161 10.4804 male


LSMeans Differences Student's t

 α = 0.050 t= 2.05183

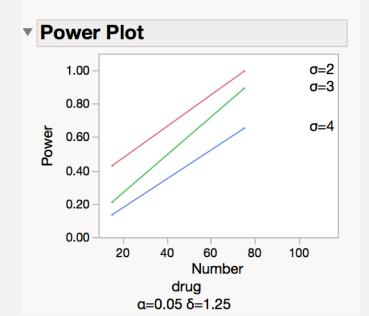
	Loast
Level	Sq Mean
male A	10.480400
female B	6.961097

Levels not connected by same letter are significantly different.

Power δ Number Power 0.0500 1.5 15 0.7344 0.0500 1.5 50 0.9994 0.0500 1.5 15 0.4093 0.0500 1.5 50 0.9329 0.0500 1.5 15 0.2552 0.0500 1.5 50 0.7368

▼ Least Squares Means Table

	Least		
Level	Sq Mean	Std Error	Mean
Α	7.134856	0.6358680	6.9791
В	8.710767	1.0109658	9.8318
C	10.316622	0.8824433	10.8948

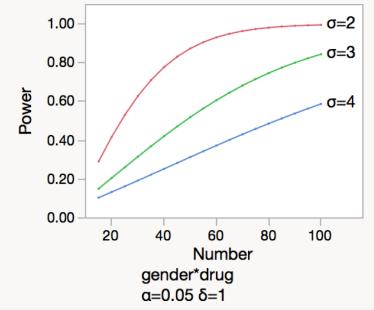

▼ LSMeans Differences Tukey HSD

a= 0.050 Q= 2.47942

		Least
Level		Sq Mean
С	Α	10.316622
В	ΑВ	8.710767
Α	В	7.134856

Levels not connected by same letter are significantly different.

Power δ Number Power α σ 15 0.4322 0.0500 1.25 0.0500 1.25 75 0.9986 0.0500 1.25 15 0.2139 0.0500 1.25 75 0.8953 0.0500 1.25 15 0.1382 0.0500 4 1.25 75 0.6562

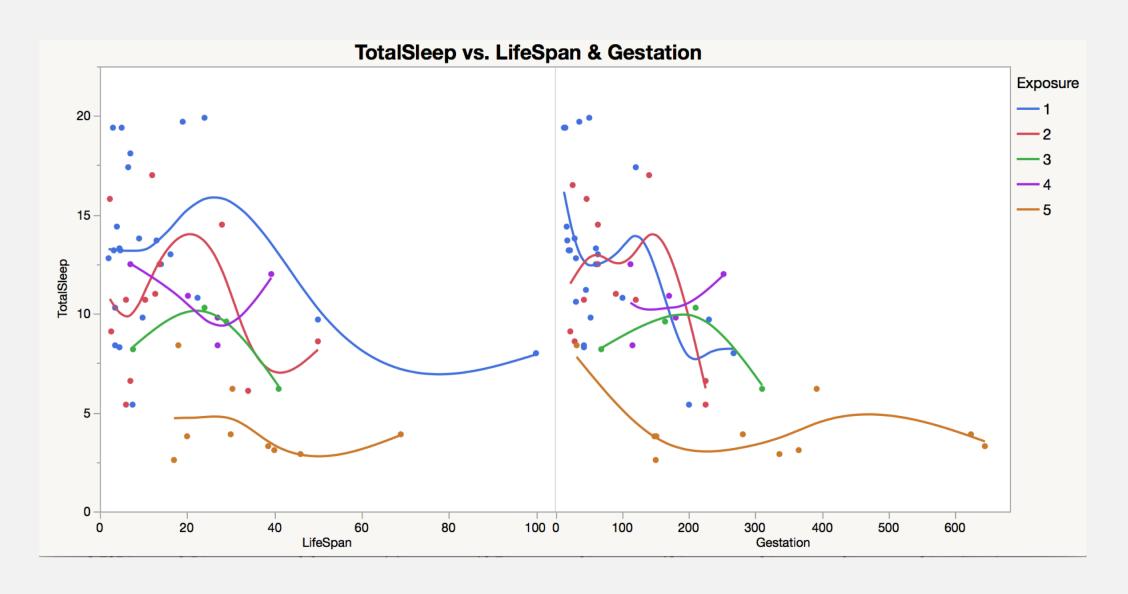

Least Squares Means Table Least Sq Mean **Std Error** Level female,A 6.784513 0.6702638 1.7088440 female,B 6.095000 female,C 8.003778 1.3952653 male,A 7.485200 1.0807679 male.B 11.326533 1.0807679 male,C 12.629467 1.0807679

■ LSMeans Differences Tukey HSD

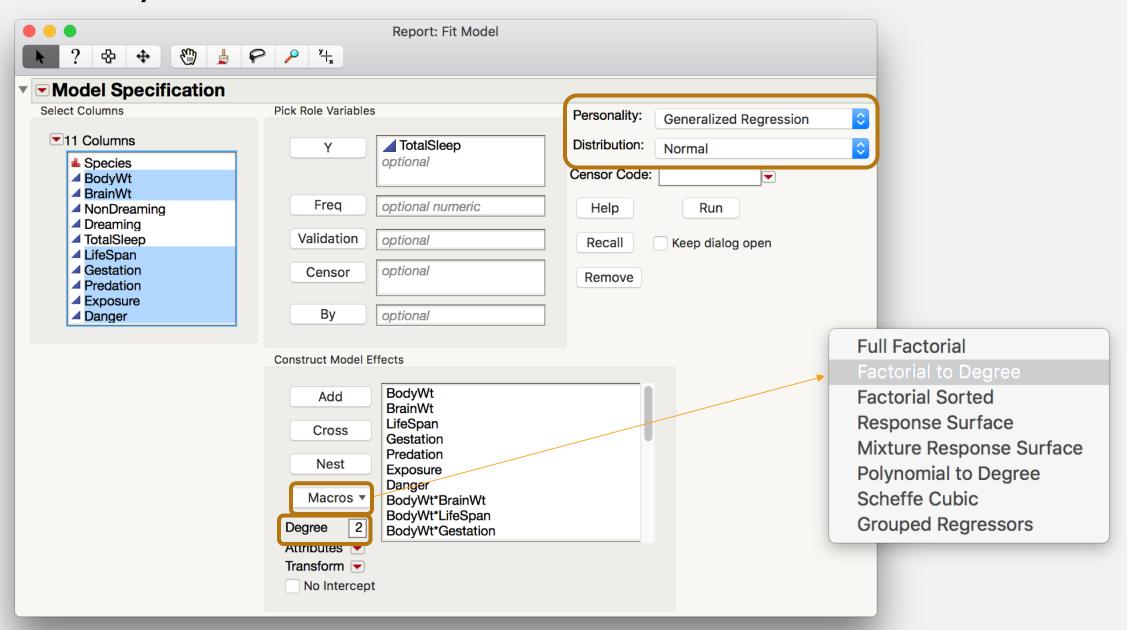
α= 0.050 Q= 3.06385							
				Least			
Level				Sq Mean			
male,C	Α			12.629467			
male,B	Α	В		11.326533			
female,C	Α	В	С	8.003778			
male,A		В	С	7.485200			
female,A			С	6.784513			
female,B		В	С	6.095000			

Levels not connected by same letter are significantly different.

Power Plot 1.00



REGRESSION


- Includes brain and body weight, life span, gestation time, time sleeping, and predation and danger indices for 62 species of mammals.
- Of interest is to predict the time spent sleeping.

Sleeping Animals.jmp											
•	Species	BodyWt	BrainWt	NonDreaming	Dreaming	TotalSleep	LifeSpan	Gestation	Predation	Exposure	Dange
1	African elephant	6654	5712	•	•	3.3	38.6	645	3	5	
2	African giant pouched rat	1	6.6	6.3	2	8.3	4.5	42	3	1	
3	Arctic Fox	3.385	44.5	•	•	12.5	14	60	1	1	
4	Arctic ground squirrel	0.92	5.7	•	•	16.5	•	25	5	2	
5	Asian elephant	2547	4603	2.1	1.8	3.9	69	624	3	5	
6	Baboon	10.55	179.5	9.1	0.7	9.8	27	180	4	4	
7	Big brown bat	0.023	0.3	15.8	3.9	19.7	19	35	1	1	
8	Brazilian tapir	160	169	5.2	1	6.2	30.4	392	4	5	
9	Cat	3.3	25.6	10.9	3.6	14.5	28	63	1	2	
10	Chimpanzee	52.16	440	8.3	1.4	9.7	50	230	1	1	
11	Chinchilla	0.425	6.4	11	1.5	12.5	7	112	5	4	
12	Cow	465	423	3.2	0.7	3.9	30	281	5	5	
13	Desert hedgehog	0.55	2.4	7.6	2.7	10.3	•	•	2	1	
14	Donkey	187.1	419	•	•	3.1	40	365	5	5	
15	Eastern American mole	0.075	1.2	6.3	2.1	8.4	3.5	42	1	1	
16	Echidna	3	25	8.6	0	8.6	50	28	2	2	
17	European hedgehog	0.785	3.5	6.6	4.1	10.7	6	42	2	2	
18	Galago	0.2	5	9.5	1.2	10.7	10.4	120	2	2	
19	Genet	1.41	17.5	4.8	1.3	6.1	34	•	1	2	

Use the Drag-and-Drop interface in **Graph → Graph Builder** to explore the data

Go to Analyze → Fit Model

Standard Least Squares ■

Model Summary

Response Distribution Normal

Estimation Method Standard Least Squares

Validation Method None Mean Model Link Identity Scale Model Link Identity

Measure

Number of rows Sum of Frequencies

-LogLikelihood

Number of Parameters BIC

AICc **RSquare**

RSquare Adj

RMSE

TotalSleep

62

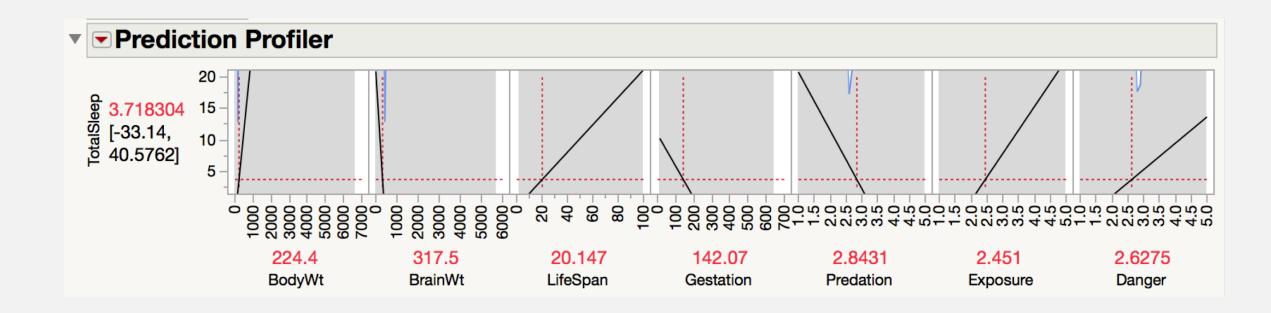
51

107.24504

332.44485

367.49008

0.8170884

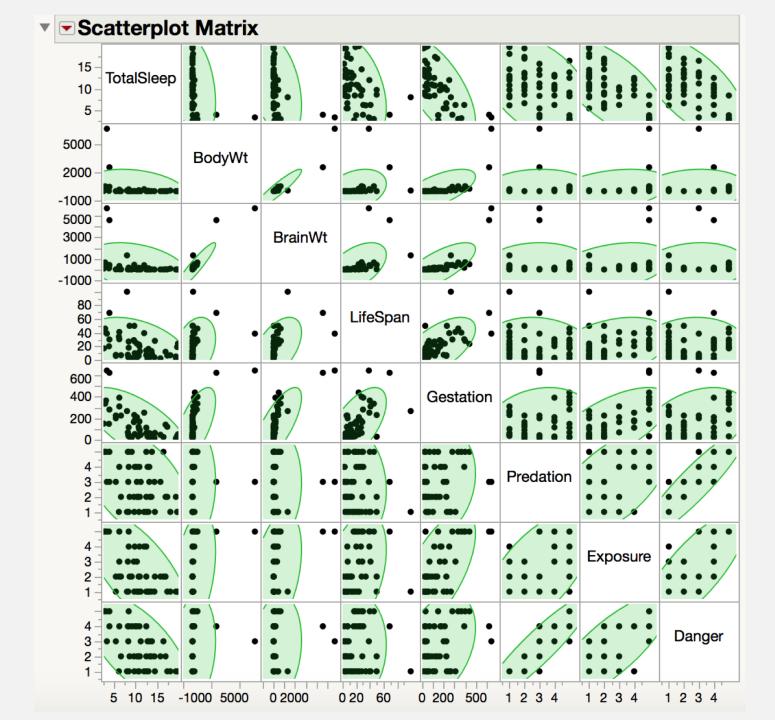

0.5842918

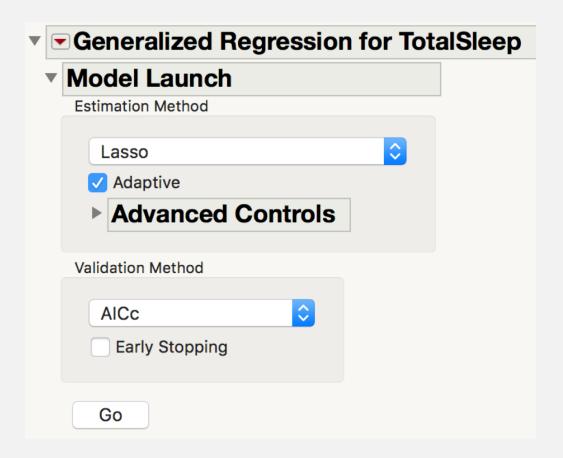
1.9816016

Parameter Estimates for Original Predictors

			Wald	Prob >
Term	Estimate	Std Error	ChiSquare	ChiSquare
Intercept	14.222181	18.543901	0.5882071	0.4431
BodyWt	0.0287448	0.323292	0.0079055	0.9292
BrainWt	-0.054196	0.1807508	0.0899013	0.7643
LifeSpan	0.2181922	0.2705285	0.6505076	0.4199
Gestation	-0.050316	0.0412041	1.4911651	0.2220
Predation	-9.262813	81.82251	0.0128156	0.9099
Exposure	7.4745626	3.7790178	3.9121338	0.0479*
Danger	4.1941935	81.884386	0.0026236	0.9591
(BodyWt-224.363)*(BrainWt-317.502)	2.0964e-6	1.6069e-5	0.0170197	0.8962
(BodyWt-224.363)*(LifeSpan-20.1471)	-0.000873	0.0014008	0.3886397	0.5330
(BodyWt-224.363)*(Gestation-142.069)	9.7234e-5	0.0002753	0.1247439	0.7239
(BodyWt-224.363)*(Predation-2.84314)	0.0834584	1.4908411	0.0031338	0.9554
(BodyWt-224.363)*(Exposure-2.45098)	0.0217658	0.0326038	0.4456676	0.5044
(BodyWt-224.363)*(Danger-2.62745)	-0.112957	1.4913449	0.0057368	0.9396
(BrainWt-317.502)*(LifeSpan-20.1471)	0.0004776	0.0004081	1.3694114	0.2419
(BrainWt-317.502)*(Gestation-142.069)	-0.000285	0.0002072	1.8849887	0.1698
(BrainWt-317.502)*(Predation-2.84314)	-0.101604	0.8338899	0.0148459	0.9030
(BrainWt-317.502)*(Exposure-2.45098)	0.0171796	0.0221224	0.6030602	0.4374
(BrainWt-317.502)*(Danger-2.62745)	0.1115525	0.8348508	0.0178542	0.8937
(LifeSpan-20.1471)*(Gestation-142.069)	0.0037244	0.0016205	5.2818749	0.0215*
(LifeSpan-20.1471)*(Predation-2.84314)	-0.107643	0.6017127	0.032003	0.8580
(LifeSpan-20.1471)*(Exposure-2.45098)	-0.211865	0.1535277	1.9043442	0.1676
(LifeSpan-20.1471)*(Danger-2.62745)	0.127296	0.6568542	0.0375571	0.8463
(Gestation-142.069)*(Predation-2.84314)	0.0345868	0.0454583	0.5788875	0.4467
(Gestation-142.069)*(Exposure-2.45098)	-0.013856	0.0134418	1.0626404	0.3026
(Gestation-142.069)*(Danger-2.62745)	-0.030575	0.0425874	0.5154178	0.4728
(Predation-2.84314)*(Exposure-2.45098)	-0.522191	2.1683587	0.0579957	0.8097
(Predation-2.84314)*(Danger-2.62745)	-1.072457	0.8276892	1.6789	0.1951
(Exposure-2.45098)*(Danger-2.62745)	1.2165131	1.8223287	0.4456359	0.5044

Rather useless model...

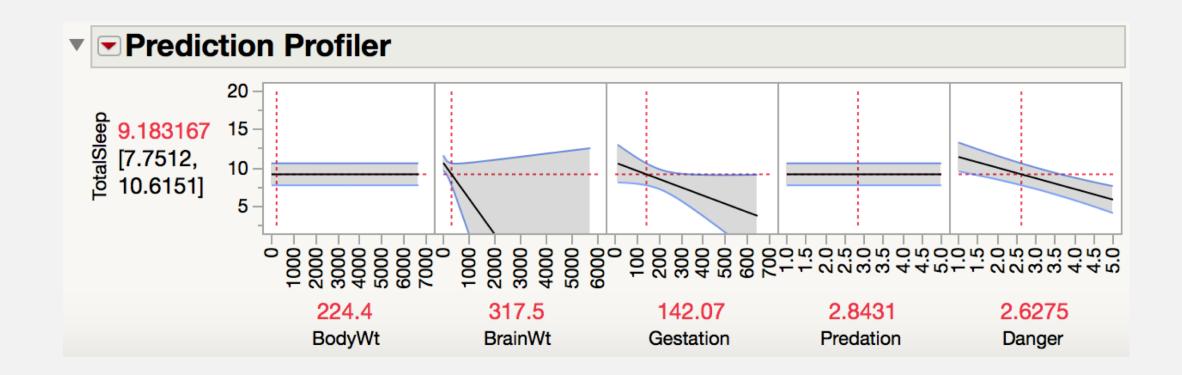

Use


Analyze →

Multivariate Methods →

Multivariate

to get correlations:

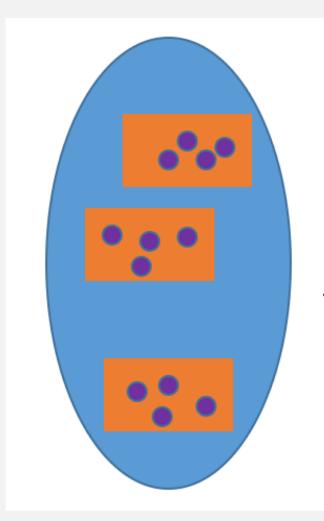

Options such as:

- Force certain terms to be in the model
- Force "Effect heredity" (so that if an interaction effect will be in the model, then its main effects also need to be in the model)

■ Adaptive Las	SSC	with Ale	C	Validation	
Model Summ	ar	у	₩	Estimation Detail	S
				Number of Grid Points Minimum Penalty Fraction Grid Scale	150 0 Square Root
Mean Model Link Scale Model Link Measure		ntity			
Number of rows Sum of Frequencies -LogLikelihood	6	62 51 122.09385			
Number of Parameters BIC AICc ERIC RSquare	ers.	279.57412 266.57794 254.93618 0.6725586			
Lambda Penalty		77.203421			

▼ Parameter Estimates for Original Predictors

			Wald	Prob >
Term	Estimate	Std Error	ChiSquare	ChiSquare
Intercept	15.859904	0.9230672	295.21231	<.0001*
BodyWt	0	0	0	1.0000
BrainWt	-0.004671	0.0025969	3.235129	0.0721
LifeSpan	0	0	0	1.0000
Gestation	-0.010792	0.005891	3.3558682	0.0670
Predation	0	0	0	1.0000
Exposure	0	0	0	1.0000
Danger	-1.393155	0.2987683	21.743512	<.0001*
(BodyWt-224.363)*(BrainWt-317.502)	0	0	0	1.0000
(BodyWt-224.363)*(LifeSpan-20.1471)	0	0	0	1.0000
(BodyWt-224.363)*(Gestation-142.069)	4.6541e-6	2.5904e-6	3.2279754	0.0724
(BodyWt-224.363)*(Predation-2.84314)	-0.003993	0.0015299	6.810896	0.0091*
(BodyWt-224.363)*(Exposure-2.45098)	0	0	0	1.0000
(BodyWt-224.363)*(Danger-2.62745)	0.0060396	0.0025199	5.7444161	0.0165*
(BrainWt-317.502)*(LifeSpan-20.1471)	0	0	0	1.0000
(BrainWt-317.502)*(Gestation-142.069)	0	0	0	1.0000
(BrainWt-317.502)*(Predation-2.84314)	-0.000745	0.0012981	0.3290839	0.5662
(BrainWt-317.502)*(Exposure-2.45098)	0	0	0	1.0000
(BrainWt-317.502)*(Danger-2.62745)	0	0	0	1.0000
(LifeSpan-20.1471)*(Gestation-142.069)	0	0	0	1.0000
(LifeSpan-20.1471)*(Predation-2.84314)	0	0	0	1.0000
(LifeSpan-20.1471)*(Exposure-2.45098)	0	0	0	1.0000
(LifeSpan-20.1471)*(Danger-2.62745)	0	0	0	1.0000
(Gestation-142.069)*(Predation-2.84314)	0	0	0	1.0000
(Gestation-142.069)*(Exposure-2.45098)	0	0	0	1.0000
(Gestation-142.069)*(Danger-2.62745)	0	0	0	1.0000
(Predation-2.84314)*(Exposure-2.45098)	0	0	0	1.0000
(Predation-2.84314)*(Danger-2.62745)	0	0	0	1.0000
(Exposure-2.45098)*(Danger-2.62745)	U	U	U	1.0000

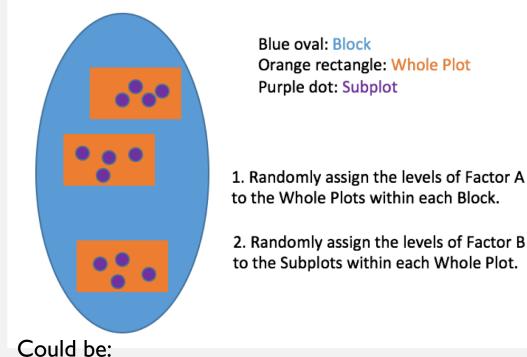


MIXED MODELS

1. A split-plot (or hierarchical) model

2. Repeated measurements taken on the same subject over time

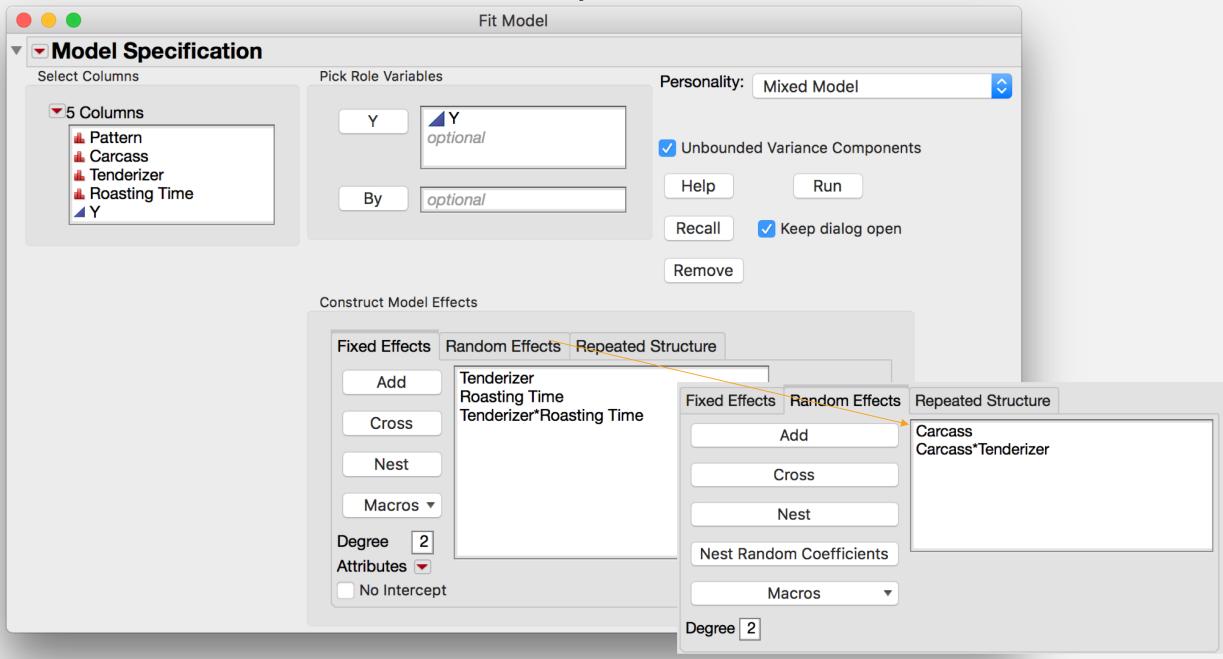
MIXED MODELS: SPLIT-PLOT / HIERARCHICAL

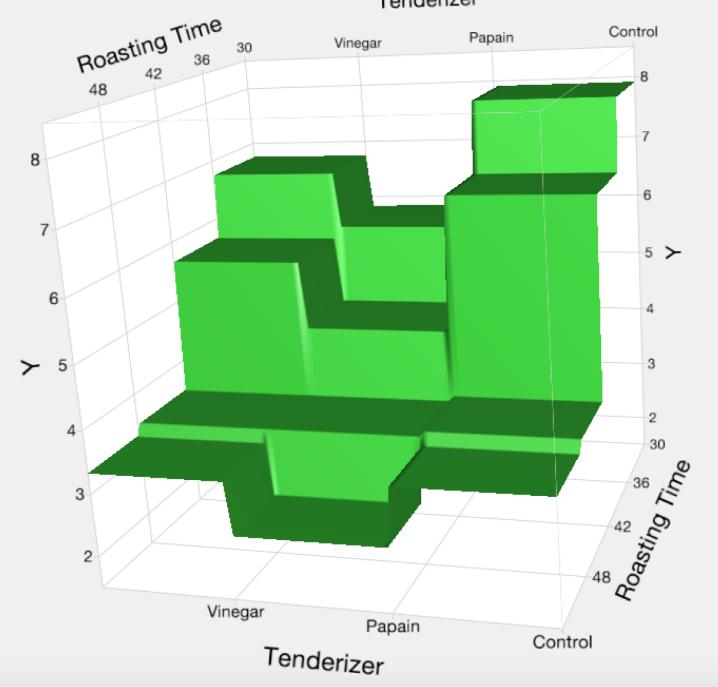


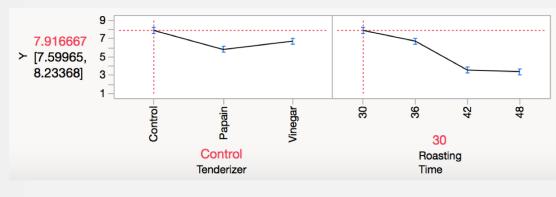
Blue oval: Block

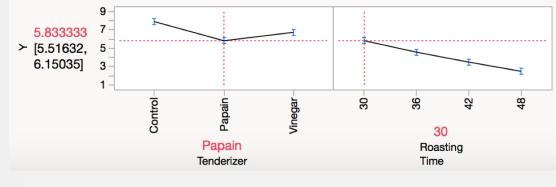
Orange rectangle: Whole Plot

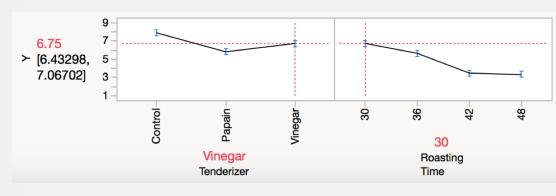
Purple dot: Subplot


- 1. Randomly assign the levels of Factor A to the Whole Plots within each Block.
- 2. Randomly assign the levels of Factor B to the Subplots within each Whole Plot.

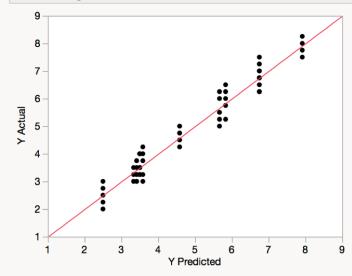

Typical Split-Plot Design (pooling Blocks*B and Blocks*A*B to create the subplot error):				
Source:	df:	Effect Type:		
Blocks	r-1	Random		
Α	a-1	Fixed		
Blocks*A	(r-1)(a-1)	Random		
В	b-1	Fixed		
A*B	(a-1)(b-1)	Fixed		
Error				

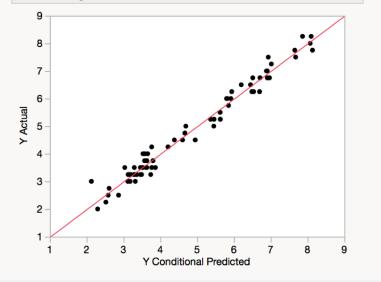

- Different **Nursing Methods** (Factor A) are applied to randomly selected **Units** (Whole Plots) within **Hospitals** (Blocks), but three different **Rating Scales** (Factor B) are randomized to the individual **Patients** (Subplots) in the hospitals. (Response is Patient Satisfaction.)
- Different Watering Methods (Factor A) are applied to randomly selected Large Fields (Whole Plots) within Different Farms (Blocks), but three different Fertilizers (Factor B) are randomized to the individual Small Fields (Subplots) into which the large fields are subdivided. (Response is Yield.)
- Different **Tenderizers** (Factor A) are applied to randomly selected **cuts of meat** (Whole Plots) within **different carcasses** (Blocks), but different **Roasting Times** (Factor B) are randomized to the individual **Cores** (Subplots) in the cuts of meat. (Response is Toughness.)


Go to Analyze → Fit Model



Tenderizer





▼ Fit Mixed

▼ Actual by Predicted Plot

▼ Actual by Conditional Predicted Plot

Fit Statistics

-2 Residual Log Likelihood	68.324206
-2 Log Likelihood	23.659713
AICc	62.231142
BIC	87.809705

Random Effects Covariance Parameter Estimates

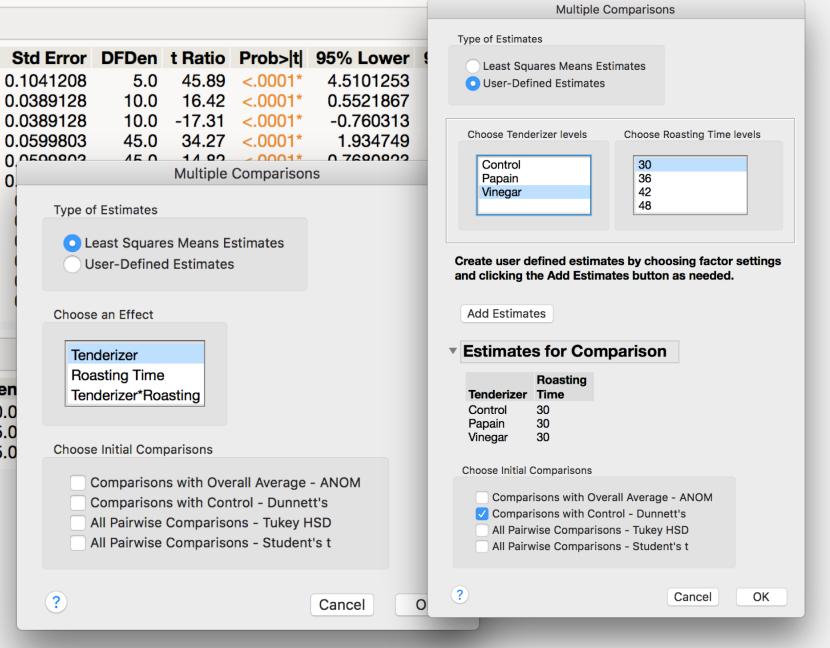
Variance Component	Estimate	Std Error	95% Lower	95% Upper	Wald p- Value
Carcass	0.0605042	0.0411897	-0.020226	0.1412346	0.1419
Carcass*Tenderizer	-0.007958	0.0076058	-0.022865	0.0069492	0.2954
Residual	0.0863433	0.0182028	0.0594013	0.1369749	
Total	0.1468476	0.0450325	0.0871689	0.2983101	

Random Coefficients

Carcass

Carcass	Intercept
1	0.2842167
2	0.1291894
3	0.1679462
4	-0.025838
5	-0.258379
6	-0.297136

Carcass*Tenderizer

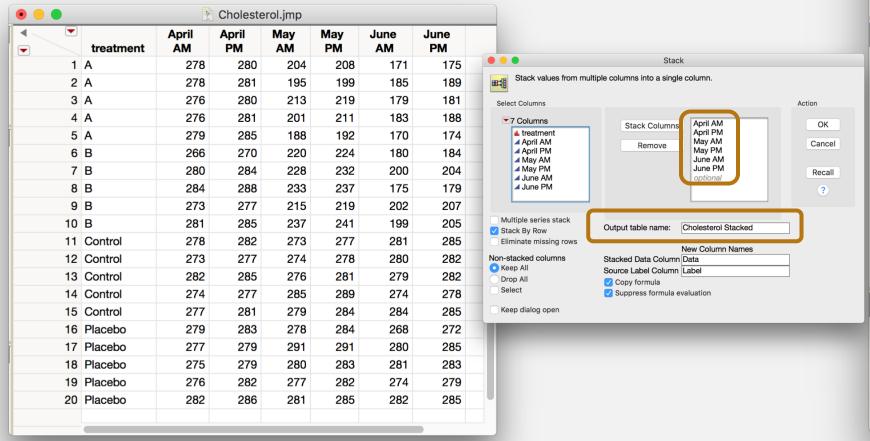

Carcass	Tenderizer	Intercept
1	Control	-0.101675
1	Papain	0.0808084
1	Vinegar	-0.016516
2	Control	0.0267775
2	Papain	-0.046216
2	Vinegar	0.0024464
3	Control	0.0494094
3	Papain	-0.060081
3	Vinegar	-0.011418
4	Control	-0.027253
4	Papain	0.0457398
4	Vinegar	-0.015088
5	Control	0.0194383
5	Papain	0.0559349
5	Vinegar	-0.041389
6	Control	0.033303
6	Papain	-0.076187
6	Vinegar	0.0819652

Fixed Effects Parameter Estimates

Term	Estimate	
Intercept	4.7777778	
Tenderizer[Control]	0.6388889	
Tenderizer[Papain]	-0.673611	
Roasting Time[30]	2.0555556	
Roasting Time[36]	0.8888889	
Roasting Time[42]	-1.25	
Tenderizer[Control]*Roasting Time[30]	0.444444	
Tenderizer[Control]*Roasting Time[36]	0.444444	
Tenderizer[Control]*Roasting Time[42]	-0.583333	
Tenderizer[Papain]*Roasting Time[30]	-0.326389	
Tenderizer[Papain]*Roasting Time[36]	-0.409722	
Tenderizer[Papain]*Roasting Time[42]	0.6458333	

Fixed Effects Tests

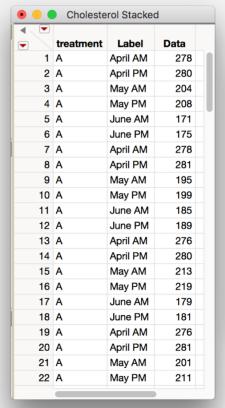
Source	Nparm	DFNum	DFDen
Tenderizer	2	2	10.0
Roasting Time	3	3	45.0
Tenderizer*Roasting Time	6	6	45.0

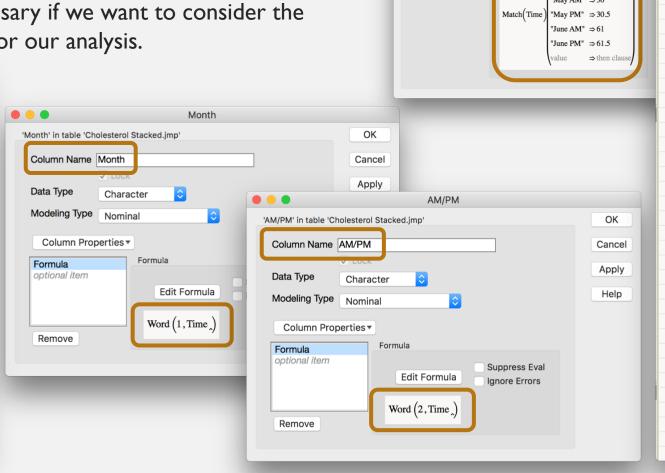

MIXED MODELS: REPEATED MEASURES

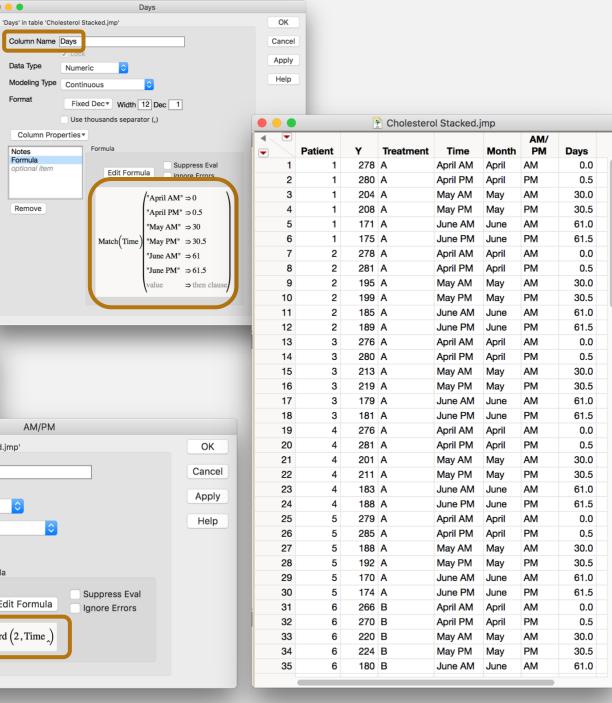
- A study was performed to test two new cholesterol drugs against a control drug.
- Five patients with high cholesterol were randomly assigned to each of four treatments (the two experimental drugs, the control, and a placebo).
- Each patient's total **cholesterol** was measured at six times during the study: the first day in April, May, and June in the morning and afternoon.
- You are interested in whether either of the new drugs is effective at lowering cholesterol and in whether time and treatment interact.

Unique feature: The measurements are not totally independent, as we would assume for an ANOVA or Regression, but instead are correlated within subject.

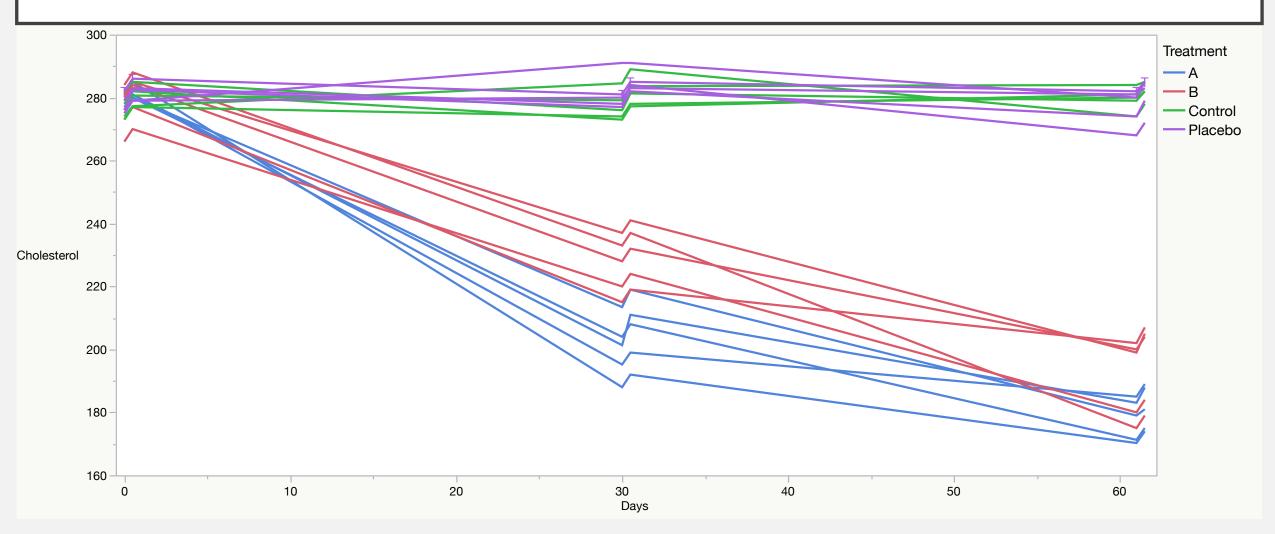
Some notes:

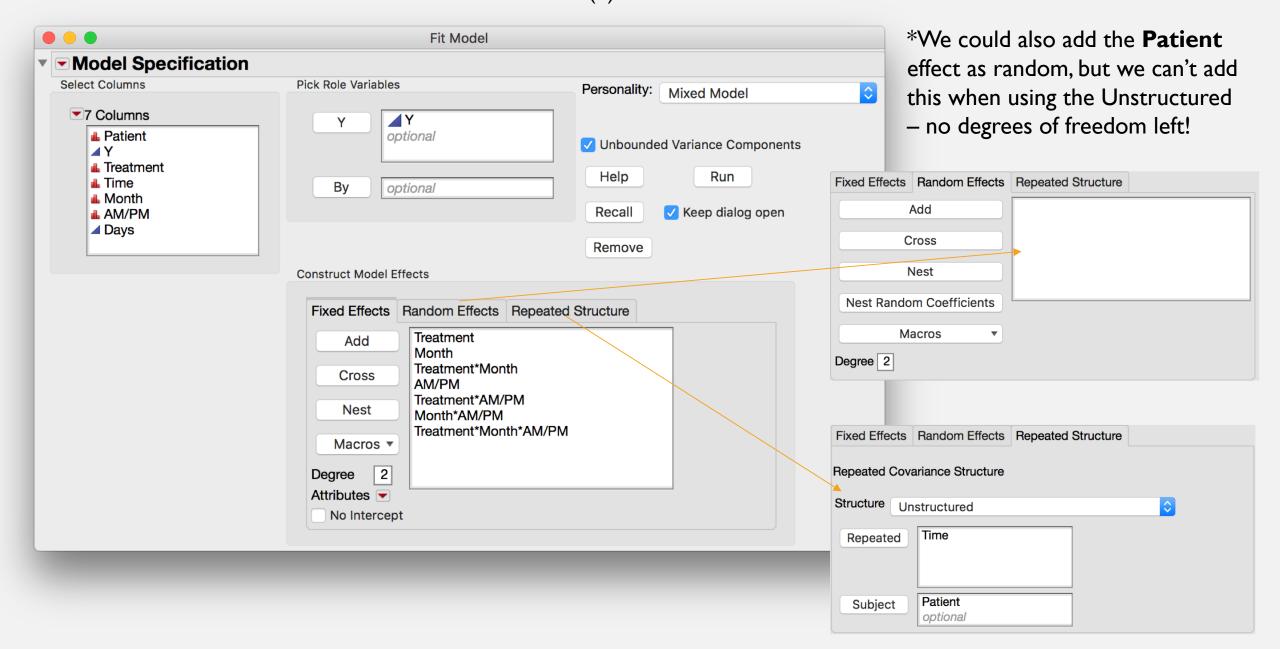

- We need each cholesterol measurement needs to be in its own row.
 - ➤ We can use the Tables → Stack to reformat the data. For example, take Cholesterol.jmp and transform it into Cholesterol Stacked.jmp




Cholesterol Stacked				
■ •				
	treatment	Label	Data	
1	Α	April AM	278	
2	Α	April PM	280	
3	Α	May AM	204	
4	Α	May PM	208	
5	Α	June AM	171	
6	Α	June PM	175	
7	Α	April AM	278	
8	Α	April PM	281	
9	Α	May AM	195	
10	Α	May PM	199	
11	Α	June AM	185	
12	Α	June PM	189	
13	Α	April AM	276	
14	Α	April PM	280	
15	Α	May AM	213	
16	Α	May PM	219	
17	Α	June AM	179	
18	Α	June PM	181	
19	Α	April AM	276	
20	Α	April PM	281	
21	Α	May AM	201	
22	Α	May PM	211	
)	

More notes:


- Now let's clean up that data table and add columns for each factor we are interested in ("Month" and "AM/PM")
- We also need a continuous variable to indicate the time over which the repeated measures were taken. This will be necessary if we want to consider the AR(I) structure for our analysis.



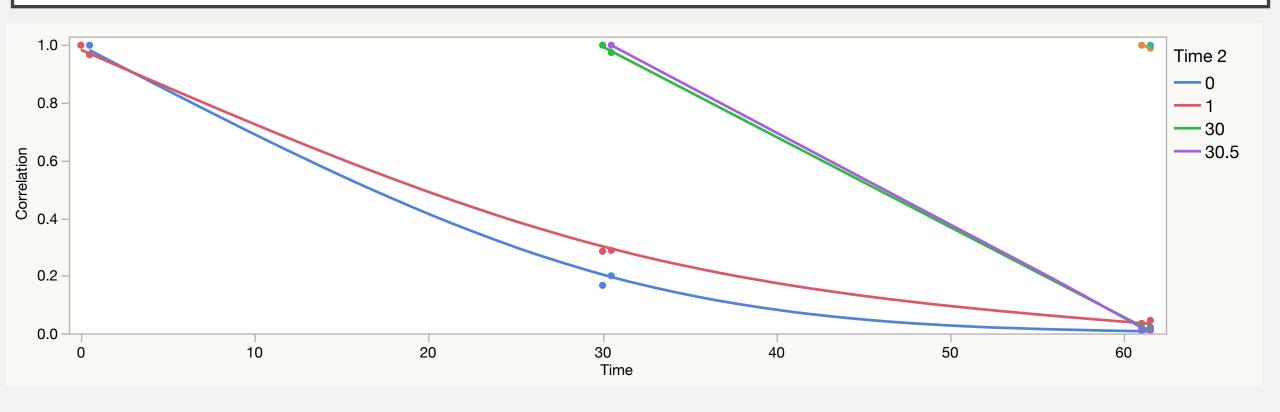
First, fit the model we want (full factorial of Treatment, Month, and AM/PM), and use the Unstructured in order to see (I) how the observations are correlated with each other over time and (2) to decide if the variances are the same or different over time.

▼ Repeated Effects Covariance Parameter Estimates

Repeated Effect: Time

Subject: Patient

Covariance				
Parameter	Estimate	Std Error	95% Lower	95% Upper
Var(April AM)	18.725	6.6202872	5.7494754	31.700525
Cov(April PM, April AM)	18.354884	6.6035621	5.4121399	31.297628
Var(April PM)	19.268932	6.8125963	5.9164888	32.621376
Cov(May AM, April AM)	9.2756709	8.4629182	-7.311344	25.862686
Cov(May AM, April PM)	5.5074058	8.3704001	-10.89828	21.913089
Var(May AM)	56.603347	20.012305	17.379949	95.826744
Cov(May PM,April AM)	9.4147226	8.5038584	-7.252534	26.081979
Cov(May PM,April PM)	6.6230805	8.4532303	-9.944946	23.191108
Cov(May PM, May AM)	55.365523	19.83529	16.489068	94.241978
Var(May PM)	57.058089	20.173081	17.519577	96.596602
Cov(June AM, April AM)	1.1945478	8.6266098	-15.7133	18.102392
Cov(June AM, April PM)	0.3183447	8.7461245	-16.82374	17.460434
Cov(June AM, May AM)	1.106725	14.992149	-28.27735	30.490796
Cov(June AM, May PM)	0.6455101	15.050552	-28.85303	30.14405
Var(June AM)	63.512277	22.454981	19.501323	107.52323
Cov(June PM,April AM)	1.5810194	8.7687993	-15.60551	18.76755
Cov(June PM,April PM)	0.7647113	8.8882627	-16.65596	18.185386
Cov(June PM, May AM)	0.9262595	15.232066	-28.92804	30.780561
Cov(June PM, May PM)	0.6543895	15.292238	-29.31785	30.626625
Cov(June PM, June AM)	63.878686	22.700344	19.386829	108.37054
Var(June PM)	65.568482	23.181959	20.132677	111.00429


Table Style
Columns
Sort by Column...

Make into Data Table
Make Combined Data Table
Make Into Matrix
Format Column...
Show Properties

Copy Column
Copy Table

Simulate

CORRELATIONS VS. TIME

Conclusions:

- -Correlations are high between AM/PM on the same day (Time 0 with Time 0 and Time 1, and Time 30 with Time 30 and Time 30.5)
- -Correlations decay the farther apart in time the measurements are from each other.

SOME POSSIBLE STRUCTURES:

- Unequal Variances structure assumes unequal variances BUT DOES NOT ALLOW ANY NON-ZERO CORRELATIONS.
- Compound Symmetry, CS, structure assumes same correlation from any time point to any other time point. This is equivalent to adding a random effect for each patient.
- There is also CS with Unequal Variances.

or	orrelation matrix:					
	1	r	r	r		
		1	r	r		
			1	r		
				1		

Example correlation matrix				
1	.97	.97	.97	
	1	.97	.97	
		1	.97	
			1	

• Auto-Regressive of Order 1, AR(1), structure assumes that the correlations will degrade exponentially over time.

Cor	orrelation matrix:				
	1	r	r ²	r³	
		1	r	r ²	
			1	r	
				1	

Example correlation matrix				
1	.90	.81	.73	
	1	.90	.81	
		1	.90	
			1	

Let's compare:

- Residual Only
- Compound Symmetry (this is just using Patient as a random effect)
- AR(I)
- AR(I) plus Patient as a random effect
- Unstructured

(simpler to more complicated)

WHICH MODEL IS BEST? (SMALLER FIT STATISTICS ARE BETTER)

Unstructured:

Fit Statistics

-2 Residual Log Likelihood 554.98818 -2 Log Likelihood 557.89101 AICc 703.83696 BIC 773.32814 AR(I) plus random patient effects:

▼ Fit Statistics

-2 Residual Log Likelihood 576.71933 -2 Log Likelihood 585.05495 AICc 655.48974 BIC 714.31723 AR(I):

▼ Fit Statistics

-2 Residual Log Likelihood 577.09954 -2 Log Likelihood 585.53021 AICc 652.62698 BIC 710.00499

Compound Symmetry:

▼ Fit Statistics

-2 Residual Log Likelihood 721.03949 -2 Log Likelihood 765.45515 AICc 832.55192 BIC 889.92993 Residual Only (no accounting for dependence):

▼ Fit Statistics

-2 Residual Log Likelihood 731.09452 -2 Log Likelihood 778.02393 AICc 841.85372 BIC 897.71123

AR(I):

▼ Fixed Effects Parameter Estimates

Term	Estimate	Std Error	DFDen	t Ratio	Prob> t	95% Lower	95% Upper
Intercept	253.67179	0.9973849	22.8	254.34	<.0001*	251.60745	255.73613
Treatment[A]	-32.98848	1.7275214	22.8	-19.10	<.0001*	-36.56402	-29.41294
Treatment[B]	-20.03845	1.7275214	22.8	-11.60	<.0001*	-23.61399	-16.46291
Treatment[Control]	26.051892	1.7275214	22.8	15.08	<.0001*	22.476351	29.627433
Month[April]	25.485843	1.1353123	73.2	22.45	<.0001*	23.223268	27.748418
Month[May]	-5.052009	1.0147916	95.9	-4.98	<.0001*	-7.066372	-3.037646

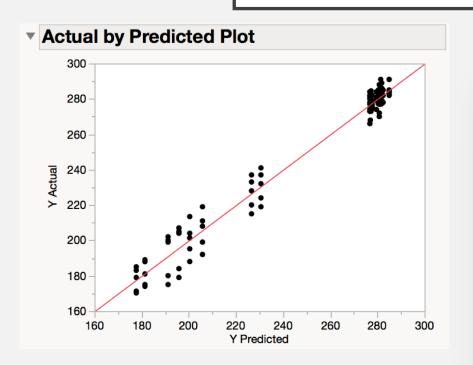
In this case, adding the **Patient** random effects does not help us.

AR(I) with random patient effects:

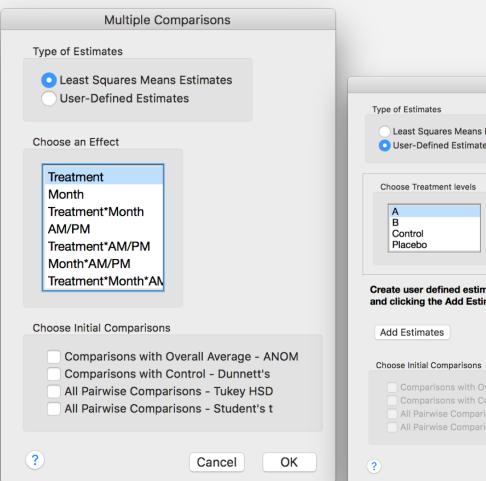
▼ Fixed Effects Parameter Estimates

· Mod Indote : didino							
Term	Estimate	Std Error	DFDen	t Ratio	Prob> t	95% Lower	95% Upper
Intercept	253.67179	0.9378746	16.5	270.48	<.0001*	251.68838	255.6552
Treatment[A]	-32.98848	1.6244464	16.5	-20.31	<.0001*	-36.42384	-29.55311
Treatment[B]	-20.03845	1.6244464	16.5	-12.34	<.0001*	-23.47382	-16.60309
Treatment[Control]	26.051892	1.6244464	16.5	16.04	<.0001*	22.616526	29.487258
Month[April]	25.485843	1.2059822	28.7	21.13	<.0001*	23.018127	27.953559
Month[May]	-5.052009	1.0417762	71.3	-4.85	<.0001*	-7.129116	-2.974902

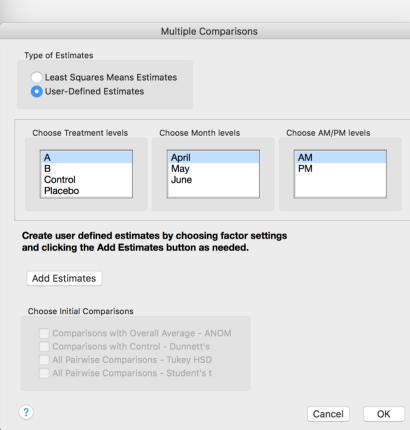
Remember, Std Errors are made up of the related **error** components divided by the related **degrees of freedom**.

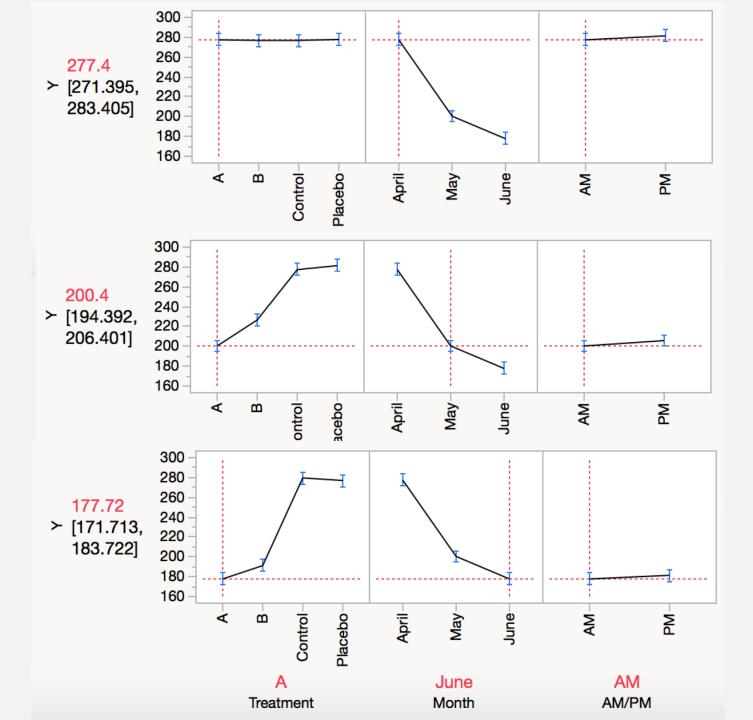

- → If adding model complexity can reduce the unexplained variance, it will be easier to detect significant results.
- → But if you don't gain enough in explaining the variance, the loss of degrees of freedom might actually make it HARDER to detect significant differences.

▼ Random Coefficients


▼ Patient Patient

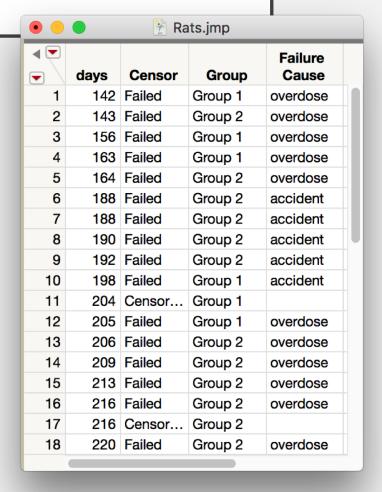
Patient	Intercept
1	0.8246733
2	-0.665516
3	-1.430139
4	-1.318725
5	2.5897066
6	4.9122149
7	-2.296658
8	0.9279618
9	0.1211668
10	-3.664686
11	-0.080837
12	1.1362682
13	-0.706763
14	0.5086569
15	-0.857325
16	1.686069
17	-1.395608
18	0.2097648
19	1.0523585
20	-1.552584

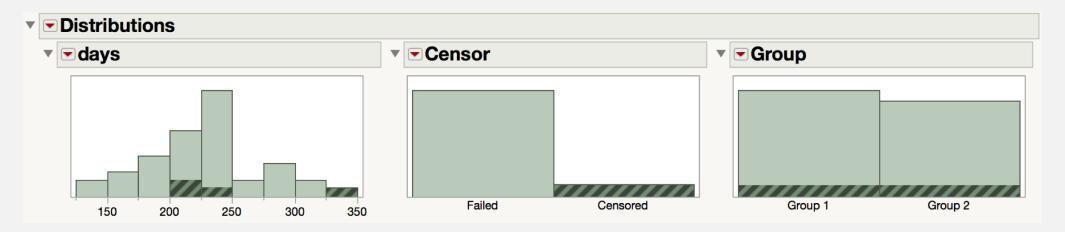

MORE FROM THE FINAL MODEL:

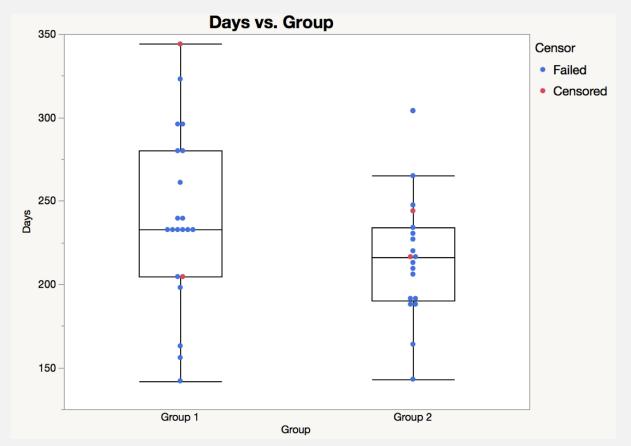


Assess residuals; save out predicted values or standard errors

Make estimates, comparisons, or contrasts

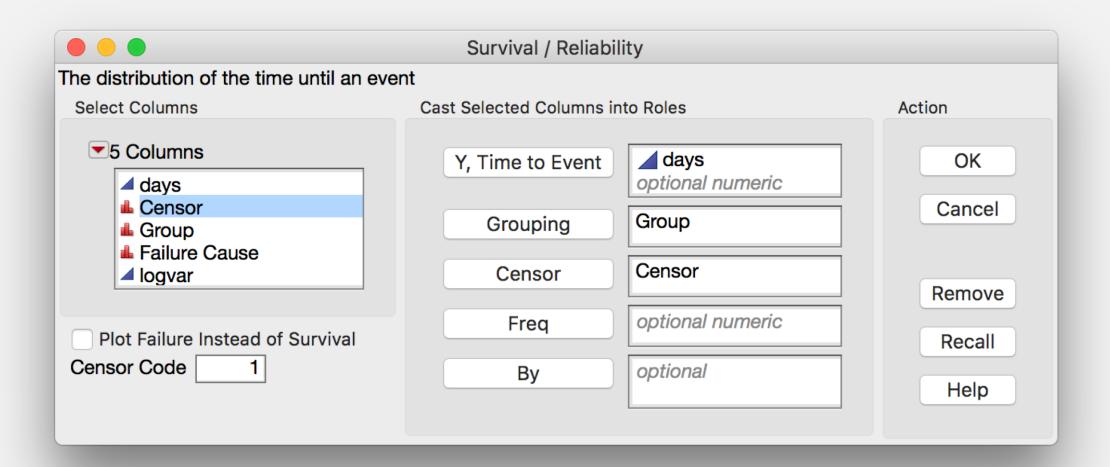


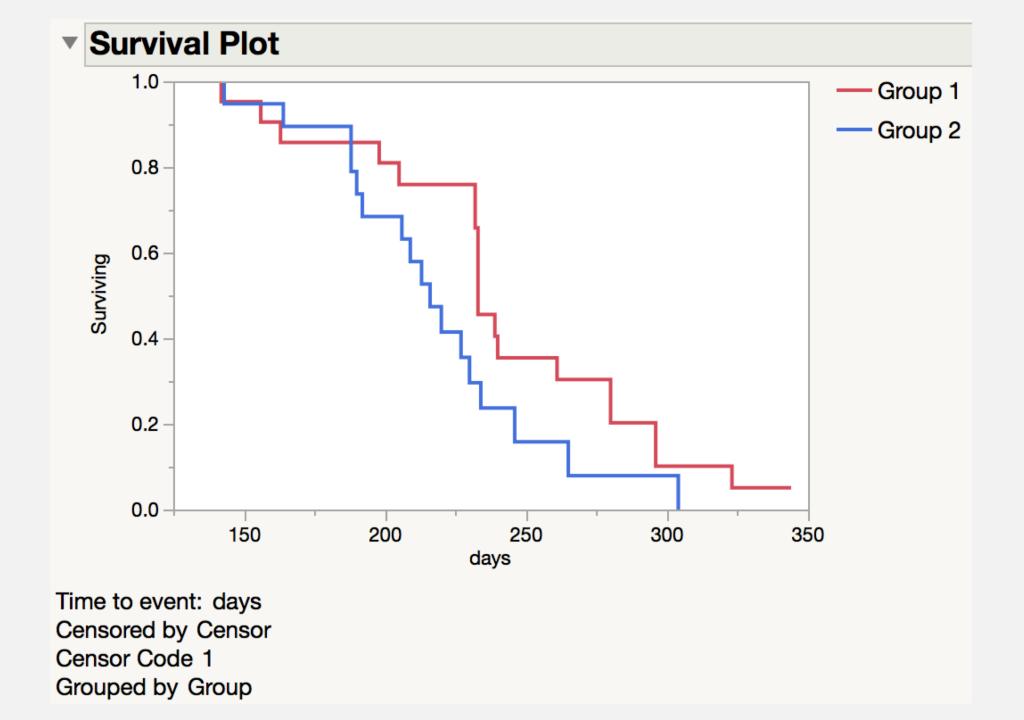



- If we do not appropriately account for the lack of independence between repeated measures, as well as any random effects that can explain some of the variance, we might not have the power to **detect** significant effects, or we might have wide Cls.

SURVIVAL ANALYSIS

- An experiment was undertaken to characterize the survival time of rats exposed to a carcinogen in two treatment groups.
- The event in this example is death.
- The objective is to see whether rats in one treatment group live longer (more days) than rats in the other treatment group.





		days				
Group	Censor	N	Min	Mean	Max	
Group 1	Failed	19.00	142.00	235.53	323.00	
	Censored	2.00	204.00	274.00	344.00	
Group 2	Failed	17.00	143.00	213.82	304.00	
	Censored	2.00	216.00	230.00	244.00	

Go to Analyze → Reliability and Survival → Survival

▼ Group 1

_				Number	Number	
days	Survival	Failure	SurvStdErr	failed	censored	At Risk
0.000	1.0000	0.0000	0.0000	0	0	21
142.000	0.9524	0.0476	0.0465	1	0	21
156.000	0.9048	0.0952	0.0641	1	0	20
163.000	0.8571	0.1429	0.0764	1	0	19
198.000	0.8095	0.1905	0.0857	1	0	18
204.000	0.8095	0.1905	0.0857	0	1	17
205.000	0.7589	0.2411	0.0941	1	0	16
232.000	0.6577	0.3423	0.1053	2	0	15
233.000	0.4554	0.5446	0.1114	4	0	13
239.000	0.4048	0.5952	0.1099	1	0	9
240.000	0.3542	0.6458	0.1072	1	0	8
261.000	0.3036	0.6964	0.1031	1	0	7
280.000	0.2024	0.7976	0.0902	2	0	6
296.000	0.1012	0.8988	0.0678	2	0	4
323.000	0.0506	0.9494	0.0493	1	0	2
344.000	0.0506	0.9494	0.0493	0	1	1

▼ Group 2

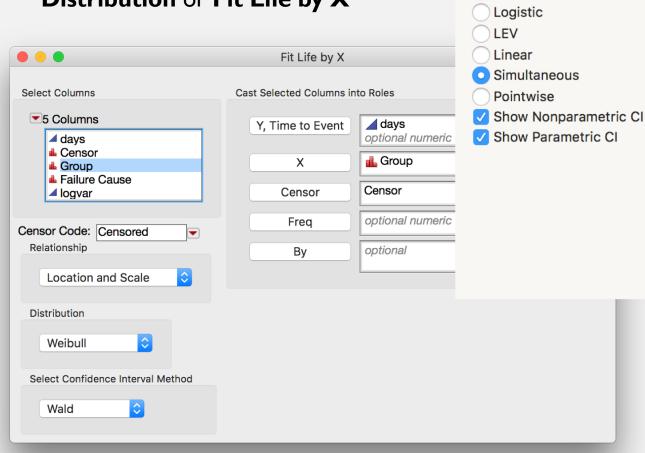
				Number	Number	
days	Survival	Failure	SurvStdErr	failed	censored	At Risk
0.000	1.0000	0.0000	0.0000	0	0	19
143.000	0.9474	0.0526	0.0512	1	0	19
164.000	0.8947	0.1053	0.0704	1	0	18
188.000	0.7895	0.2105	0.0935	2	0	17
190.000	0.7368	0.2632	0.1010	1	0	15
192.000	0.6842	0.3158	0.1066	1	0	14
206.000	0.6316	0.3684	0.1107	1	0	13
209.000	0.5789	0.4211	0.1133	1	0	12
213.000	0.5263	0.4737	0.1145	1	0	11
216.000	0.4737	0.5263	0.1145	1	1	10
220.000	0.4145	0.5855	0.1145	1	0	8
227.000	0.3553	0.6447	0.1124	1	0	7
230.000	0.2961	0.7039	0.1082	1	0	6
234.000	0.2368	0.7632	0.1015	1	0	5
244.000	0.2368	0.7632	0.1015	0	1	4
246.000	0.1579	0.8421	0.0934	1	0	3
265.000	0.0789	0.9211	0.0728	1	0	2
304.000	0.0000	1.0000	0.0000	1	0	1

▼ Combined

days Survival Failure SurvStdErr Number failed Number censored At Risk 0.000 1.0000 0.0000 0.0000 0 0 40 142.000 0.9750 0.0250 0.0247 1 0 40 143.000 0.9500 0.0500 0.0345 1 0 39 156.000 0.9250 0.0750 0.0416 1 0 38 163.000 0.9000 0.1000 0.0474 1 0 37 164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 32 198.000 0.7750 0.2250 0.0660 1 0 31 204.000 0.7500 0.2500 0.0685 0 1 30					A1	Al	
0.000 1.0000 0.0000 0.0000 0 40 142.000 0.9750 0.0250 0.0247 1 0 40 143.000 0.9500 0.0500 0.0345 1 0 39 156.000 0.9250 0.0750 0.0416 1 0 38 163.000 0.9000 0.1000 0.0474 1 0 37 164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31		Oil	Failure.	O Obd E			At Diele
142.000 0.9750 0.0250 0.0247 1 0 40 143.000 0.9500 0.0500 0.0345 1 0 39 156.000 0.9250 0.0750 0.0416 1 0 38 163.000 0.9000 0.1000 0.0474 1 0 37 164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31	_						
143.000 0.9500 0.0500 0.0345 1 0 39 156.000 0.9250 0.0750 0.0416 1 0 38 163.000 0.9000 0.1000 0.0474 1 0 37 164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31							
156.000 0.9250 0.0750 0.0416 1 0 38 163.000 0.9000 0.1000 0.0474 1 0 37 164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31					•		
163.000 0.9000 0.1000 0.0474 1 0 37 164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31							
164.000 0.8750 0.1250 0.0523 1 0 36 188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31					-		
188.000 0.8250 0.1750 0.0601 2 0 35 190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31							
190.000 0.8000 0.2000 0.0632 1 0 33 192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31					-		
192.000 0.7750 0.2250 0.0660 1 0 32 198.000 0.7500 0.2500 0.0685 1 0 31							
198.000 0.7500 0.2500 0.0685 1 0 31					-		
204.000 0.7500 0.2500 0.0685 0 1 30					_		
005 000 0 7044 0 0750 0 0700 4 0 00							
205.000 0.7241 0.2759 0.0708 1 0 29							
206.000 0.6983 0.3017 0.0729 1 0 28							
209.000 0.6724 0.3276 0.0746 1 0 27					_		
213.000 0.6466 0.3534 0.0761 1 0 26							
216.000 0.6207 0.3793 0.0773 1 1 25		0.000			-		
220.000 0.5937 0.4063 0.0785 1 0 23					-		
227.000 0.5667 0.4333 0.0795 1 0 22					-		
230.000 0.5397 0.4603 0.0801 1 0 21					-		
232.000 0.4858 0.5142 0.0807 2 0 20						•	
233.000 0.3778 0.6222 0.0788 4 0 18					-		
234.000 0.3508 0.6492 0.0776 1 0 14					•	•	
239.000 0.3238 0.6762 0.0762 1 0 13							
240.000 0.2969 0.7031 0.0745 1 0 12					-		
244.000 0.2969 0.7031 0.0745 0 1 11							
246.000 0.2672 0.7328 0.0727 1 0 10					-		
261.000 0.2375 0.7625 0.0704 1 0 9							
265.000 0.2078 0.7922 0.0676 1 0 8					_	_	
280.000 0.1484 0.8516 0.0599 2 0 7							
296.000 0.0891 0.9109 0.0485 2 0 5						_	
304.000 0.0594 0.9406 0.0404 1 0 3							
323.000 0.0297 0.9703 0.0291 1 0 2					_		
344.000 0.0297 0.9703 0.0291 0 1 1	344.000	0.0297	0.9703	0.0291	0	1	1

▼ Summary

	Number	Number			
Group	failed	censored	Mean		Std Error
Group 1	19	2	240.795	Biased	11.206
Group 2	17	2	218.757		9.40318
Combined	36	4	230.729	Biased	7.57346


▼ Quantiles

				25 %	75%
Group	Median Time	Lower 95%	Upper 95%	Failures	Failures
Group 1	233	232	280	232	280
Group 2	216	190	234	190	234
Combined	232	213	239	201.5	261

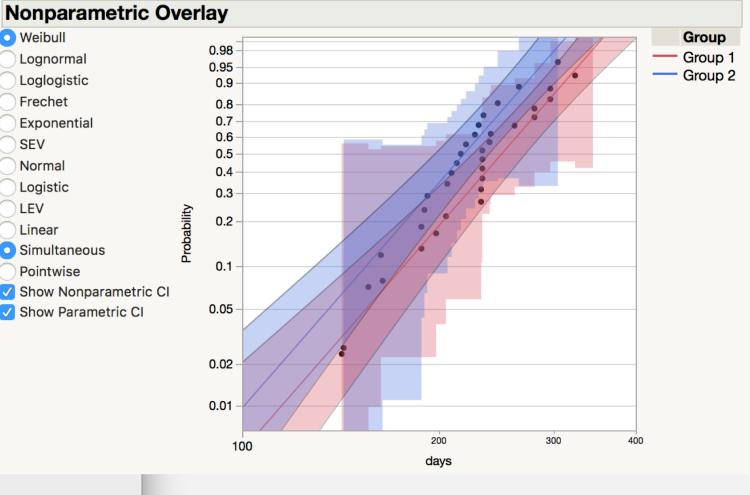
▼ Tests Between Groups

Test	ChiSquare	DF	Prob>ChiSq
Log-Rank	3.1227	1	0.0772
Wilcoxon	2.6510	1	0.1035

If we want to make estimates of how long we expect the rat to survive, or estimate how many rats will die by a certain day, we can use **Analyze** \rightarrow Reliability and Survival → Life Distribution or Fit Life by X

Weibull

Lognormal


Loglogistic

Exponential

Frechet

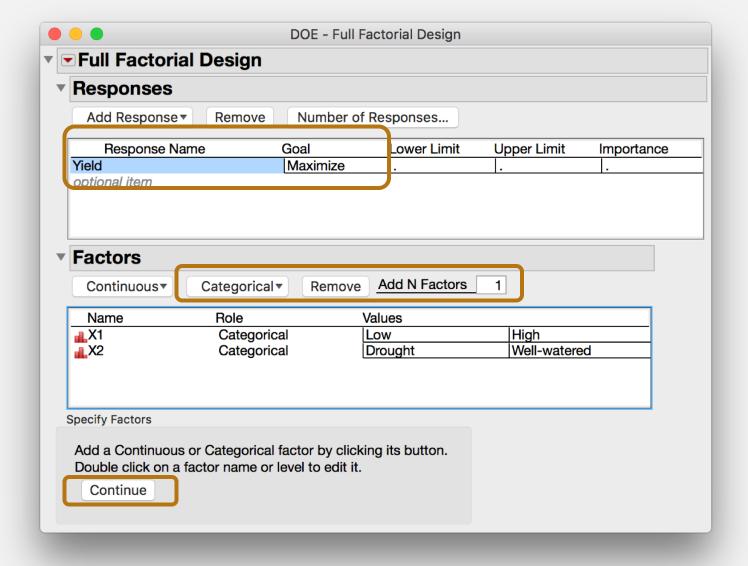
SEV

Normal

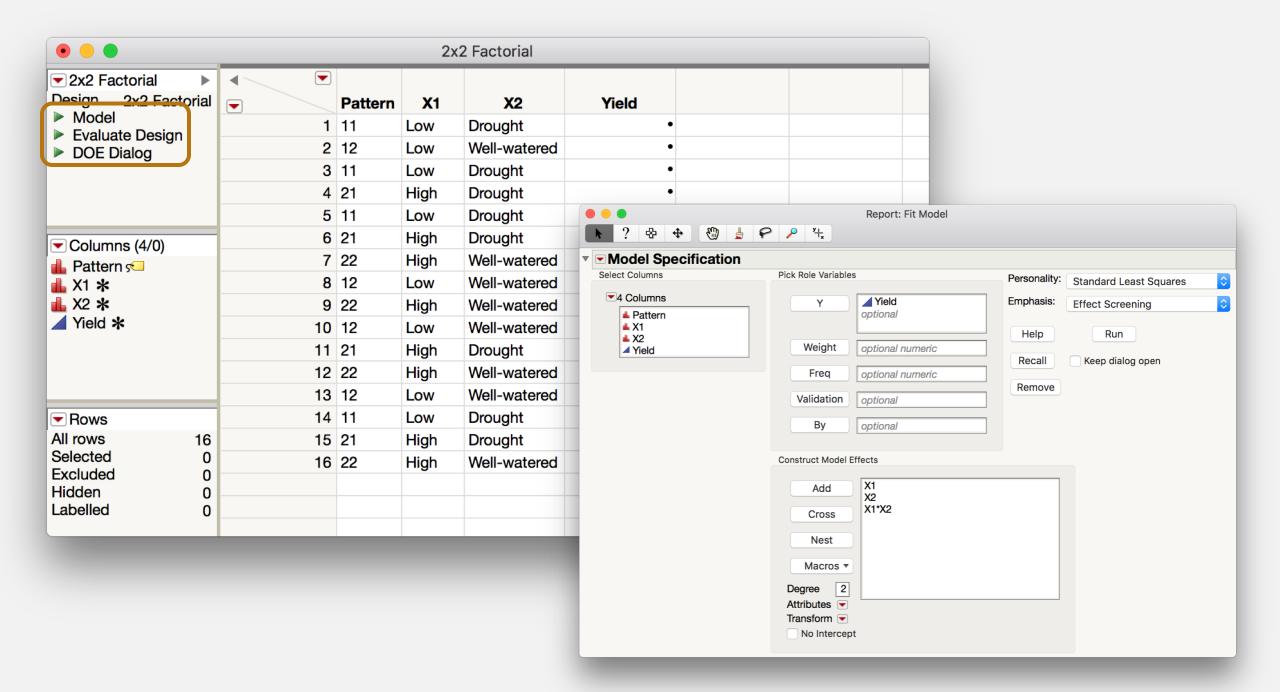
Custom Quantile Estimation

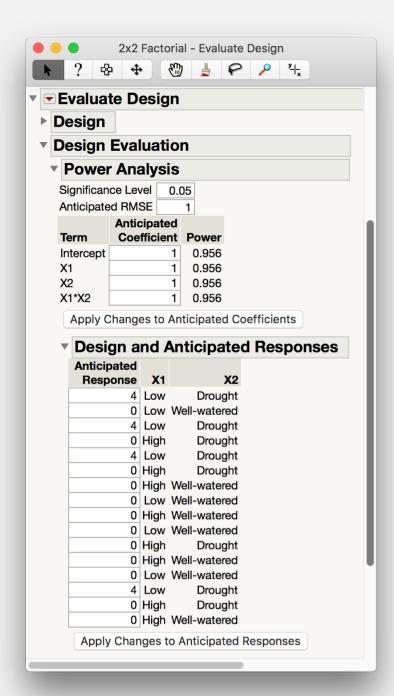
Failure Probability G	aroup	Life Time Quantile	Life Time Quantile Lower 95%	Life Time Quantile Upper 95%
0.10000000 G	aroup 1	175.97737	152.23873	203.41758
0.10000000 G	Group 2	154.21881	133.64227	177.96345
0.50000000 G	Group 1	248.55432	227.34570	271.74146
0.50000000 G	Group 2	217.82205	198.73803	238.73863

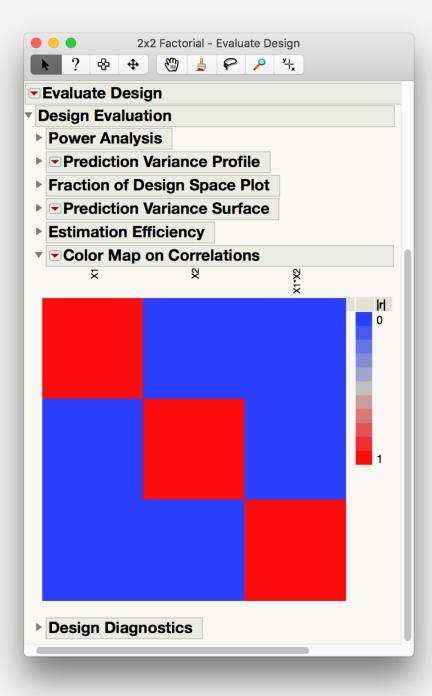
Custom Probability Estimation

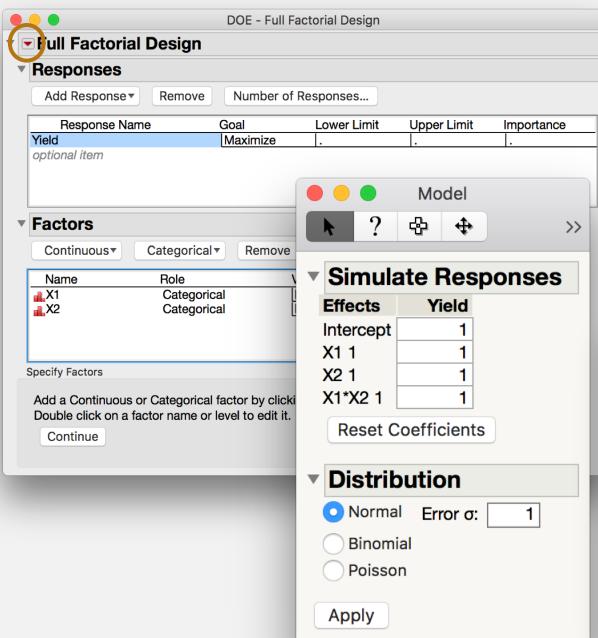

days	Group	Failure Probability	Failure Probability Lower 95%	Failure Probability Upper 95%
	•	0.19084879	0.10403175	0.33518689
200.00000	Group 2	0.35279158	0.22259227	0.52849164
300.00000	Group 1	0.85549034	0.70705377	0.95253491
300.00000	Group 2	0.98120760	0.89927006	0.99897335

- If we want to add more predictor terms into the model, or do modern variable selection we can use Analyze → Fit Model and choose the
 - Generalized Regression,
 - Parametric Survival, or
 - Proportional Hazards personalities


DESIGNED EXPERIMENTS


- Plan to measure Yield of plants that receive either the high or low level of a Fertilizer treatment and under either Drought or Well-watered conditions.
- You plan to run this as a balanced full factorial.
- You can run 4 experimental units in each treatment combination.


Go to **DOE** → **Classical** → **Full Factorial Design**


2x2 Factorial Output Options		
Run Order:	Randomize	•
Number of Runs: Number of Center Points: Number of Replicates:	0 3	4
Make Table		
Back		

Save Responses
Load Responses
Save Factors
Load Factors
Save Constraints
Load Constraints
Set Random Seed
Simulate Responses
Advanced Options
Save Script to Script Window

O Section 2x2 Factorial								
□ 2x2 Factorial □ Design 2x2 Factorial □ Model □ Evaluate Design □ DOE Dialog □ DOE Simulate		Pattern	X 1	X2	Yield	Yield Simulated		
	1	11	Low	Drought	5.6198402126	5.61984021		
	2	21	High	Drought	0.1457973008	0.1457973		
	3	22	High	Well-watered	1.0610246862	1.06102469		
	4	12	Low	Well-watered	-0.183512273	-0.1835123		
	5	21	High	Drought	0.0506317124	0.05063171		
Columns (5/0) Pattern 1	6	11	Low	Drought	3.6747055108	3.67470551		
	7	12	Low	Well-watered	-0.359707038	-0.359707		
	8	12	Low	Well-watered	-0.409218288	-0.4092183		
	9	12	Low	Well-watered	-1.076937051	-1.0769371		
	10	21	High	Drought	0.4773740622	0.47737406		
	11	22	High	Well-watered	-0.089125258	-0.0891253		
	12	11	Low	Drought	5.5560411402	5.55604114		
	13	22	High	Well-watered	-0.028377981	-0.028378		
Rows	14	22	High	Well-watered	-0.930202528	-0.9302025		
All rows 16 Selected 0 Excluded 0 Hidden 0 Labelled 0	15	11	Low	Drought	3.6854769062	3.68547691		
	16	21	High	Drought	-0.603726713	-0.6037267		

OTHER TOPICS

Connecting JMP with SAS, R, Matlab, or Python, or capturing real-time data into JMP:
 Help → Books → Scripting Guide → Extending JMP

More Power and Sample Size situations

www.jmp.com/learn → Basic Proportions and Means

Help \rightarrow Books \rightarrow Design of Experiments Guide \rightarrow Prospective Sample Size and Power

- More examples on specific topics, search for "JMP On-Demand Webcasts" to find many!
 - Text Mining to find topics or insights from unstructured text data, such as patient charts
 - More generalized regression, more survival analysis
 - More Designed Experiments