
Combining Predictive Analytics and Experimental Design

Donald McCormack – Technical Enablement don.mccormack@jmp.com

Predictive Analytics/Experimental Design Introduction

Comparisons

- Predictive Analytics
 - Large number of inputs
 - Correlated factors
 - Complex relationship between inputs and outputs
 - Based on retrospective data
 - Flexible modeling techniques
 - Large and irregular factor space
 - Factor selection may be important
 - Prediction may be important

- Experimental Design
 - Small number of inputs
 - Little/no correlation among factors
 - Simple relationship between inputs and outputs.
 - Based on prospective data
 - Simple modeling techniques
 - Small and regular factor space
 - Factor selection may be important
 - Prediction may be important

Variable (Feature) Selection

- Experimental Design
 - Ad-Hoc
 - Stepwise Regression/All Subsets Regression
 - Design Specific (Fit DSD)
 - Model Selection for Designed Experiments Webcast
- Predictive Analytics
 - Variable Importance
 - Column Contributions (Trees)
 - Lasso
 - Other

Predictive Analytics

$$\mathcal{Y} = \mathcal{F}(\mathcal{X})$$

- Construct ${\mathcal X}$ is related to construct ${\mathcal Y}$ through function ${\mathcal F}$.
- Operationalized into mathematical function:

$$Y = f(X) + E$$

• Where \pmb{Y} and \pmb{X} are quantifiable phenomena. \pmb{E} accounts for the disparity between the fitted model $f(\pmb{X})$ and \pmb{Y} .

Predictive Analytics

$$Y = f(X) + E$$

- An empirical representation that relates a set of inputs (predictors, X) to one or more outcomes (responses, Y)
 - **Y**is one or more continuous or categorical response outcomes
 - **X** is one or more continuous or categorical predictors
 - f(X) describes predictable variation in Y(signal)
 - \boldsymbol{E} describes non-predictable variation in \boldsymbol{Y} (noise)
- The mathematical form of **f(X)** can be based on domain knowledge or mathematical convenience.
- "Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful."
 - George Box

Predictive Analytics

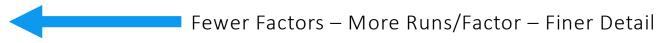
- Common predictive modeling techniques:
 - Linear regression
 - Generalized regression
 - Also known as penalized regression or shrinkage methods. It is a technique applied to linear regression to account for correlated inputs. Ridge regression, LASSO, and Elastic Net are three examples.
 - Tree based methods: Partition (CART), Bootstrap Forrest (Random Forrest), and Boosted Tree.
 - Neural networks
 - Principal components regression (PCR) and partial least squares (PLS).

Predictive Analytics

- If the model is flexible what guards against overfitting (i.e., producing predictions that are too optimistic)?
 - Put another way, how do we protect from trying to model the noise variability as part of f(X)?
- Solution Hold back part of the data, using it to check against overfitting.
 Break the data into two or three sets:
 - The model is **built** on the training set.
 - The validation set is used to select model by determining when the model is becoming too complex
 - The test set is often used to evaluate how well model predicts independent of training and validation sets.
 - Common methods include k-fold, random holdback and bootstrapping.

Experimental Design

- Designed experiments vary more than one input at a time.
- Inputs are varied independent of one another (or as close as possible).
- The experimental runs are determined in advance.
- The levels of the inputs are determined in advance.
- The order in which each experimental run is conducted is randomized.


Experimental Design

- All this is done to optimize the experimental goals established prior to running the experiment.
 - To find important input
 - To characterize a process or product
 - To find optimal settings
- DOE is the science of getting the most precise and accurate information from the experimental runs.

Experimental Design

More Factors – Fewer Runs/Factor – Less Detail

Add Other Effects — Add Q — Add 2 FI— ME Only — Some Confounding — Supersaturated

Custom Design Full Factorial RSD

Custom Design
DSD
Fractional Factorial
Plackett-Burman

Note: All things equal, fewer runs = more correlation

Questions?

jmp.com

