

JMP is 20 Years Old

JMP Version 1 shipped on October
5, 1989 — or as we claimed at the
time, September 35 — so that we
could say we shipped in the third
quarter of 1989. The big driving
force has been meeting the needs of
those users we talk to, who
correspond with us, and who
sometimes invite us into their sites.
We have a very dedicated group of
users who keep us directed, and
help us serve more and more
researchers every year.

John Sall
Executive Vice President

SAS Institute, Inc.

Slicing Solar Array Data
Xan Gregg., JMP Division of SAS Institute

As you may have read, as of January 1, 2009, the SAS world headquarters in Cary,
NC has a 1-megawatt photovoltaic solar farm in operation. The 5-acre farm is one of
the largest solar farms in the southeastern United States. A second solar farm is
scheduled for completion by late March 2010 and will generate an estimated 1.9
million kilowatt-hours
(kWh) annually, enough
to power more than 200
homes.

The output is measured
separately for two halves of
the farm, called Array A
and Array B. You can see
the arrays, along with the
sheep that maintain the
grass at the solar farm, in
the photo.

SAS Solar Farm photo by Dave Horne
Fun Facts
The projected production of the existing farm is 1.7 million kWh/year with efficiency
enhanced by using a directional system that tracks the path of the sun. The energy
generated should (or could) have the following annual effect.
• reduce carbon dioxide emissions by more than 1,600 tons

• reduce carbon dioxide emissions equivalent to the consumption of more than
167,000 gallons of gasoline

• produce enough energy to power 160 average-size North Carolina homes

• operate an average 15W compact fluorescent light for 120 million hours

• power 616,438 LED night lights used eight hours per day

Exploring the Solar Farm
This article looks at the production of the solar arrays from January through August.
You can play with the SAS solar farm data yourself by downloading it from the JMP
File exchange on the JMP web site. The data table has power output recorded every
15 minutes beginning January 1, 2009 for each of the two farm arrays. The table also
records ambient temperature, wind, and irradiance (used to indicate sun shininess).
Using column formulas, variables are extracted from the date-time variable to give
measurements for individual months, days, and times. A season variable was created
by grouping the observations into two-month categories.

A Technical Publication for JMP® Users
Issue 26 Winter 2010

Inside This
Newsletter

Slicing Solar Array Data 1

JMP is 20 Years Old 4

JMP Discovery and
Innovators Summit 5

A Script Snippet 5

Isnʼt that saying the
Same Thing? 6

The New Heros of
Commerce? 10

Quick Tip: Coloring
Complex Cell Plots 10

Instrument Measurement
Linearity 11

What about
3-D Pie Charts? 13

Expression Handling
Functions: Part I 15

2

We used a subset of the data that eliminated nighttime
hours when there was no sunlight, and brief periods of
time where one or the other array was off-line. The
resulting data table has 22,174 observations, divided
equally between the two arrays. Figure 1 shows the first
few observations in the solar array data table. The table
also has scripts that create the graphs in this article.

Figure 1 Example of Solar Array JMP Data

One fundamental question is whether the arrays have
been behaving alike and are producing the same amount
of power. But rain, seasons, and cloudiness make things
messy—the perfect data exploration terrain for JMP.

A broad look at power production by time of day over the
eight month span for the two sets of panels (A and B) can
be seen using Graph > Graph Builder, where the variable
Power is Y, Time is X, and Array is the Overlay variable.
The Graph Builder display in Figure 2 shows that array B
performs slightly better on average during midday and
early evening hours than array A.

Figure 2 Power by Time for Arrays A and B

A comparison of the arrays in different seasons, different
months and even comparing days might shed light on
why there are differences in array production.

Figure 3 breaks the plots into two-month groups
labeled Season, which is used as the Graph Builder
Wrap variable. You can see changes in the shape and
height of the curves as the number of daylight hours
increases. The Winter (January and February) and
Early Summer (May and June) plots clearly show array
A under-performing B during the midday hours, but
during the spring and late summer production appears
nearly the same.

Figure 3 Power by Time and Season for Arrays A and B

A more refined look at power output and behavior of
the two arrays is made by looking at selected days.
Using the sum of Irradiance for each day as an
indication of sunshine, some of the days with highest
irradiance were examined.

In the blog posted in April, it was noted that many of
these sunny days, especially in winter and early spring,
showed a lag in power output between the arrays
during early morning hours. Figure 4 shows an example
of 4 days with Array A lagging behind B as the sun
comes up.

Figure 4 Power by Time and Season for Arrays A and B

3

The photograph of the farm gives a clue to why there is
a difference in performance. Notice the shadows cast by
fence posts and sheep. One blog commenter said, “I
assume array A lags B because it is close to the east side
and there must be some shadow in the morning.”
Another said, “If the solar panels in Array B are aligned
on the east side of the farm, then their exposure to the
rising sun before those in Array A explains the early
morning lag in power output.” The bloggers are
correct. Shade from the trees on one side of the farm
and rotation of the panels explain the early morning lag
in power between the arrays.

Figure 5 shows days selected to illustrate how power
output changes on sunny days during the seasons.
And, since there is almost always a fair amount of rain
in the spring, May 3 is included so that you can see
how cloudy weather affects the solar panel readings.

You can clearly see the following behavior.

• Power output is greater in the summer (height of
the curves).

• Daylight lasts longer in the summer (width of the
curves).

located near the equator), but they do add a substantial
amount of productivity during the spring and summer
seasons when the solar path is high in the sky.”

There could be other factors affecting overall power
output of the arrays, such as ambient temperature.
Another blog commenter noted that “manufacturer and
solar photovoltaic literature clearly demonstrate that
solar panels exhibit a loss in efficiency that is inversely
proportional to panel temperature—the hotter the solar
panel, the lower the output. The solar panels at midday
are at or near horizontal, thereby obstructing wind and
warm/hot airflow underneath the panels. In other words,
there's a slightly greater tendency for hot air to
accumulate underneath the panels when they are all
laying in a near perfect plane to one another. Also, at
midday, the solar irradiation is at its peak maximum, so
panel temperatures should be at a maximum peak for
the day.” How does this affect power output?

Clearly, more data exploration is needed. You can access
the data used here, or the entire set of data, and respond
to the blogs on the SAS solar arrays. We welcome further
analytical insight on the solar array production.

• Spring and summer output is noisier
(wiggly curves).

Note that the winter days (January and
February) show a midday dip that seems
to moderate as the weather gets warmer
and the days get longer.

Two blog commenters pointed out that
since there's only one axis (north-south),
the angle of the arrays against the ground
is optimized for morning and evening
hours, and the horizontal tracking is sub-
optimal around noon because Cary, NC
is 35 degrees north of the equator.

The fact that this dip is greater in the
winter supports the idea that the
horizontal axis of the panel rotation
causes the dip, because it is more
pronounced when the sun is lower in the
sky.

Wikipedia says “Since [single-axis
horizontal trackers] do not tilt toward
the equator, they are not especially
effective during the winter midday
(unless

http://blogs.sas.com/jmp/

Figure 5 Mean Power (kw) by Time for Selected days, Colored by Array

4

JMP is 20 Years Old
John Sall, JMP Division of SAS Institute

October 5 was the 20th anniversary of JMP's first
release, and I want to thank everyone who has helped to
make JMP a success.

JMP version 1 shipped on October 5, 1989—or
September 35 as we claimed then so we could say we
met our goal and shipped in the third quarter of 1989.

JMP started as a research project in the late '80s. In the
earlier part of that decade, we had spent several years
rewriting SAS completely (but compatibly) to fit on
personal computers. But by 1988, we felt three big
forces, which can be characterized by:

• The vehicle—cars as well as trucks

• The roles—detectives as well as lawyers

• The technology—pointing as well as writing

The Vehicle
SAS was becoming a large enterprise-scale product—a
larger investment than some users, like engineers and
scientists, were willing to handle. We were producing
analytical trucks, but there was a market for analytical
cars, (something with low investment and ease of
driving). We needed a more personal-scale tool, one for
the desktop project rather than for the enterprise system.

The Roles
Statistics itself saw the opportunities in exploratory
techniques, and the value of graphics and interactivity.
The statistics profession had been molded as a testing
discipline, a role like a lawyer whose job is to prove things
we already knew. What was missing was the exploratory
role, like a detective, whose job is to discover things we
didn't already know. With John Tukey's Exploratory
Data Analysis and the improvement of statistical graphics,
statistics began to serve in the detective role as well as the
lawyer role. Graphics was the key enabler of seeing
patterns and points that don't fit patterns.

The Technology
The graphical user interface arrived with the
Macintosh, and later, Windows. It is a huge difference
to point and click rather than look up and type.
Applications written for batch computing through
languages were not suited for graphical interactivity. It
was time for some fresh design.

In response to these three forces, a small group put
together version 1 of JMP in a year and a half. This was a
very small product compared to the JMP of today, but it
had all the basics of statistics and graphics, with many
innovative features. We thought "jump" was a name to
suggest a big step into a new future, a product that jumps
in responsiveness to the mouse, and a tool that enables our
customers to do the experiments and make the discoveries
to take huge strides in their products and processes.

In the early years, we learned that engineers and scientists
were our most important customer segment. These
people were smart, motivated, and in a hurry—too
impatient to spend time learning languages, and eager to
just point and click on their data. We had a product that
was nearly as easy as walk-up-and-use with enough
delights to hold their loyalty.

We learned that engineers need Design of Experiments
(DOE), quality and productivity support (Six Sigma), and
reliability modeling. We made a concerted effort to
improve in these areas. We thought that engineers should
be able to simply ask the computer to custom-make a
design that fits their needs rather than attempting to find a
pre-built design that fit their circumstance.

In JMP version 3.1 we learned how to port to Windows
using the Altura library. Soon we were busy rewriting the
whole product in a different implementation language
with a portability host-interface layer, which led to a wait
of more than three years before Version 4. Version 4 not
only switched languages, but also introduced a new
nervous system for the product, including the JMP
Scripting Language.

In the last few years, JMP has matured considerably. The
driving force has been in meeting the needs of those users
we talk to, who correspond with us, who sometimes
invite us into their sites. We have a very dedicated group
of users who keep us directed, and help us serve more and
more researchers every year. Recently, I heard the group
of passionate JMP users refer to the “JMPerati,”
analogous to Stephen Baker’s term, the “numerati.”

JMP has broadened and become more versatile. JMP now
supports business visualization in partnership with SAS
Business Intelligence (BI). This, in turn, has

5

encouraged us to introduce more visualization
platforms, like the drag-and-drop Graph Builder in
JMP 8. JMP now handles larger problems because of
work we have done to multithread many of the
bottleneck methods and to implement JMP on 64-bit
systems. We now work with various SAS teams on
projects in several areas, notably JMP Genomics,
collaborating and sharing efforts.

JMP is 20 years old, but it seems like it is just getting
started. We are growing fast. Last year, our business
grew faster than ever, and
we have geared up and
prepared to grow even
faster in the future.

Happy birthday, JMP,
and thank you, everyone,
for your contributions to
JMP's success.

See this blog and others
about the JMP 20 year
anniversary at

http://blogs.sas.com/jmp/

Script Snippet
Q: How can I make a function that evaluates another
function given later with a variable number of
arguments?

A: You can construct the function by inserting
arguments, then calling the constructed function.

/* evaluate the function named in the first
argument with the list of arguments
specified in the second argument */

subfun = Function({funName,argList},
 ni = nitems(argList);
 afun = nameExpr(funName);
 for(i=1,i<=ni,i++,afun =

 insert(nameExpr(afun),argList[i]));
 afun;
);
expfunction = function({x},exp(x));
divfunction =

function({arg1,arg2},arg1/arg2);
subfun (expr(expfunction),{2});
subfun (expr(divfunction),{2,3});

For more, see page 9 for a detailed discussion of
expression handling functions, by Joseph Morgan.

The Buzz About JMP Discovery and
Innovators Summit

Arati Bechtel, JMP Division of SAS Institute

While at Discovery 2009 and Innovators' Summit in
Chicago last week, John Sall, chief architect of JMP,
spread the word about JMP, SAS and the value of
analytics. He met with journalists and bloggers, and
some of the coverage has already been published
online. Take a look:

• In a story for Computerworld, reporter Eric Lai
asked Sall why JMP chose best-selling author
Malcolm Gladwell to headline the Chicago
conferences. "Journalists are like detectives. A lot
of our customers are like that," said Sall, who is
co-founder and Executive Vice President of SAS.
"They don't just want to prove things you already
know. That's lawyer stuff. They want to look at
statistical outliers and figure out new things."

• Greg Burns, Senior Business Correspondent for
the Chicago Tribune, talked with both Sall and
Gladwell during the conferences. It is part of what
Burns is calling Big Brain Week, with Sall
representing left-brain thinking and Gladwell
representing right-brain thinking. Burns' interview
with Gladwell appeared in two parts, September
24th and 25th.

• Data visualization guru Stephen Few, Principal of
Perceptual Edge, wrote about the conferences and
Gladwell's keynote speech in his influential blog.
Few applauded Gladwell's insight that modern
problems present the challenges of too much
information and too little understanding of that
data, pointing to a need for good analytics. "More
directly related to my work in BI, I’ve stated
countless times that this industry has done a
wonderful job of giving us technologies for
collecting and storing enormous quantities of data,
but has largely failed to provide the data sense-
making tools that are needed to put data to use for
decision-making," Few writes.

Visit Stephen Few and others at

http://www.perceptualedge.com/blog/

If you didn't get to Chicago for Discovery and the
Innovators' Summit, you can get a sense of why some
attendees said it was the best conference they'd ever
been to by checking the coverage on our web site.

6

Isnʼt That Saying the Same Thing?
José G. Ramírez, Ph.D., W. L. Gore and Associates, Inc.

Mark Bailey, Ph.D., SAS Institute Inc.

Savvy users and even regulatory agencies have come to
realize that how you ask a question is very important.
Crafting the question depends on how you think about
your situation, your purpose, and the claim you want to
make. The meaning of human language and the logic of
statistical tests of significance, however, are somfetimes at
odds with each other. For example, the questions “Is there
a difference between them?” and “Are they the same?”
seem like equal but opposite questions to most people. A
negative answer to one of these questions usually means
an affirmative answer to the other question. Unfortu-
nately, that is never true for significance tests! Failing to
show a statistically significant difference between things is
not the same as showing that things are the same.

You Cannot Prove the Null
Significance tests work in only one direction—that of
disproving the null hypothesis (H0). You define the
alternative hypothesis (Ha) in terms of what you are trying
to prove by rejecting the null hypothesis. In this context,
you ‘prove’ the alternative hypothesis in the sense of
“establishing by evidence a fact or the truth of a
statement” (The Compact Oxford English Dictionary).
For example, the hypotheses that compare the average
performance of a product to a standard, k, are written:
H0: Average Performance (µ) = Standard (κ) (Assume)

Ha: Average Performance (µ) ≠ Standard (κ) (Prove)

Suppose you work on an improvement project and want
to show that the improvement has a real effect on a
measurement (a response). The alternative hypothesis is

Ha: The mean response is different after the improvement

The other possibility, the null hypothesis, is

Ho: The mean is the same in spite of the improvement

You assume that Ho is true and base your expectation on
it. If statistics do not allow you to reject the null
hypothesis then there is not enough evidence to say the
mean response is different after the improvement. Only
when there is sufficient evidence against the null

hypothesis (that is, when your result is highly unlikely
if Ho is true), do you reject it in favor of the alternative
hypothesis (Ha).

Proving Sameness
In another situation, you may not want to show that
things have changed, but that they remain the same.
For example, you need to qualify a new piece of
manufacturing equipment by showing that it does not
change the key performance characteristic of a final
product. In this case, the alternative hypothesis is

Ha: the average performance of the final product is the
same with the new equipment

versus the null hypothesis

Ho: the average performance of the final product is not the
same with the new equipment

This situation demands that Ho and Ha are stated
opposite of the way traditional significance tests define
them. You now assume that the equipment swap
caused an effect unless you have sufficient evidence to
reject that assumption. Such hypothesis tests have come
to be known as equivalence tests.

Either way, they are all significance tests. The
distinction just depends on how you define the two
hypotheses. Unfortunately, many textbooks do not
make this distinction and only address the first
example, which can be called a difference test. Table 1
below summarizes the two views of statistical tests.

Tests of Equivalence
When you say that two means are the same, what you
really say is that the difference between them is so small
that it is not of practical importance. This acceptance is
established in practical terms such that performance is
not adversely affected. In other words, you can never
show that the means are exactly the same (they will be
different in some decimal place if measured with an
accurate enough instrument).

Table 1 Two Views of Statistical Tests: Null and Alternative Hypotheses
Test Ho Ha Reject Fail to Reject

Difference No Effect Real Effect Sufficient evidence to reject “No Effect” Insufficient evidence to reject
Equivalence Real Effect No Effect Sufficient evidence to reject “Real Effect” Insufficient evidence to reject

7

Since you cannot prove equality, you show that two
sample means are statistically equivalent within an
acceptable interval. In this situation you are responsible
for defining what the acceptable equivalence interval is.

The equivalence hypotheses that compare the average
performance of a product with a standard, k, are written

H0: |Average Performance − k | > δ (Assume)

Ha: |Average Performance − k | ≤ δ (Prove)

where δ represents the equivalence bound, or practical
threshold within which the average performance is
considered to be the same as the standard.

The above hypothesis is actually two sets of one-sided
hypotheses, namely

H0: Average Performance > δ + k (Assume)

Ha: Average Performance ≤ δ + k (Prove)

H0: Average Performance < k – δ (Assume)

Ha: Average Performance ≥ k – δ (Prove)

The first set uses a test of the mean to show that the
difference between the average and the standard is
significantly less than the upper equivalence limit of the
interval and, at the same time, the second set tests the
means to show that the difference between the average
and the standard is significantly greater than the lower
equivalence limit. This simultaneous application of a
lower-tailed test and an upper-tailed test is often referred
to as Two One-Sided Tests or TOST.

Example: Is the DC Resistance = 50 Ohm?
For comparing a mean to a standard JMP does not
provide the TOST directly. Instead, you simply apply the
two tests separately. Let’s look at an example. An
improved version of a cable will be sent to the customer
and you need to demonstrate that it performs according
to the required DC resistance target of 50 Ohm. The
cable is considered to be equivalent to the specified target
if it is within 0.6 Ohm. To demonstrate this equivalence,
data was collected from a week of production by
randomly selecting 8 cables per day from the production
floor, for a total of 40 cables. The resistance of each of the
cables is measured and recorded. Figure 1 shows a
histogram, along with summary statistics of the 40 DC
resistance measurements. The data table, called
Resistance Data.jmp is available with this newsletter on the
JMP web site.

You can see that the average DC resistance of this sample
of 40 cables is 49.94 Ohm, which is close to the target

Figure 1. Distribution of 40 DC Resistance Measurements

of 50 Ohm, with a variation of 1.96 Ohm. The JMP
distribution platform can do a traditional significance
test to test the hypothesis

H0: Average DC Resistance = 50 Ohm (Assume)

Ha: Average DC Resistance ≠ 50 Ohm (Prove)

The p-value for the two-sided t-test in Figure 2 is
0.8472, which indicates there is not have enough
evidence to say that the average DC resistance of the 40
cables is not 50 Ohm.

Figure 2. Significance Test for DC Resistance = 50 Ohm

Equivalence Test
Even though there is not enough evidence to say that
the average DC resistance is not 50 Ohm, you can see

8

in Figure 2 that the average DC resistance, being 49.94
Ohm, is only 0.06 Ohm different from 50. A difference of
0.06 Ohm is well within the measurement error of 0.2
Ohm, so for all practical purposes there is no
distinguishable difference. Unfortunately, this t-test does
not help prove equivalence.

A practical threshold is needed to prove equivalence. Since
the given measurement error is 0.2 Ohm, you can decide to
define the equivalence window as 0.6 Ohm, or 3 times the
measurement error. Then, the two one-sided hypothesis
becomes:

H0: Average Resistance > 50.6 Ohm (Assume)

Ha: Average Resistance ≤ 50.6 Ohm (Prove)

H0: Average Resistance < 49.4 Ohm (Assume)

Ha: Average Resistance ≥ 49.4 Ohm (Prove)

You can conduct two one-side t-tests to show that the
average resistance is less than 50.6 Ohm, and at the same
time greater than 49.4 Ohm.

From the Distribution output, click the red triangle on the
Resistance title bar and select Test Mean, as shown in Figure
3. When the Test Mean dialog appears, enter 50.6 for the
hypothesized mean, and then click the OK.

Figure 3 Fit Mean Option on the Distribution Platform

The report on the left in Figure 4 shows the p-value
associated with the lower-tailed test, labeled Prob < t, is
equal to 0.0198 (< 0.05). This small value is enough
evidence to reject H0 and say that the average resistance is
significantly lower than 50.6.

Then, repeat this process but enter 49.4 as the value for the
hypothesized mean. This time interpret the p-value
associated with the upper-tailed test, labeled Prob > t, to
decide whether to reject H0. The report on the right in
Figure 4 shows the p-value = 0.0448 (< 0.05), which
indicates that there is enough evidence to say the mean
value is significantly greater than 49.4.

These two tests together provide enough evidence to
make the decision that the observed average DC
resistance of 49.94 Ohm is equivalent to 50 Ohm
because it is within the ± 0.6 Ohm interval.

Figure 4 Two Means Tests For Equivalence Text

Going one step further, there is a script available with
the newsletter to perform the one-sample equivalence
test. When you execute the script, the dialog shown
in Figure 5 prompts you for the inputs to test.

Figure 5 Dialog Given by Equivalence Test Script

The result (Figure 6) shows both tests and a message
indicating that the average resistance is equivalent to
50 Ohm.

Figure 6 Results of Equivalence Test Script

9

The equivalence test script launches the JMP
Distribution platform and, by default, displays a
histogram, and moments and quantiles tables. In
addition, the script performs the two means tests for
equivalence testing, and prints the conclusion giving by
the tests. In Figure 6, platform options were used to
hide the histogram and moments.

The equivalence test allows us to say, with statistical
rigor, that |Average DC Resistance − 50| ≤ 0.6 Ohm.
In other words, these simple tests show that the average
resistance of the sample of 40 cables is functionally
equivalent, as defined by the ± 0.6 Ohm window
(equivalence bound), to 50 Ohm.

Defining Equivalence
It is up to the experimenter to decide what constitutes
equivalence, and thereby define the functionally
equivalent window of performance. When defining this
window there are several options to consider.

1. Define the equivalence window as
± 3 × measurement error.
This option takes into account the measurement
error by making the window a function of it. The
definition of equivalence should stay in line with
what measurement systems can detect.

2. The equivalence bound should be much less than
the process variation.
Every process has natural process variation that
defines what the performance that can be
expected. If the process is stable this variation does
not change much and can be used as a guide to
define the equivalence window.

3. The equivalence bound should be much less than
specifications.
Ideally, specifications define fitness-for-use and as
such, determine the acceptable performance of a
product, material or process. The specification
window can guide the definition of the
equivalence window.

4. The equivalence bound should be related to
functional performance.
How small a difference can be tolerated before the
observed performance is considered different?

Notice that this common application can be generalized
to other situations: showing that two or more
population means are equivalent, two slopes or model
parameters, in general, are equivalent, and so on.

Look for more articles about applications of
equivalence tests in future issues of the JMPer Cable
newsletter. For more information about how to
determine equivalence bounds, equivalence tests, and
the theory of equivalence, tests see the references listed
below.

References
Ramírez, José G., and Ramírez, Brenda S (2009) Analyzing and

Interpreting Continuous Data Using JMP: A Step-by-Step Guide,
Cary, NC: SAS Institute Inc.

Berger, Roger L., and Hsu, Jason C. (1996) Bioequivalence Trials,
Intersection-Union Tests, and Equivalence Confidence Sets,
Statistical Science 11, 283-319.

SAS Press announces:

Analyzing and Interpreting Continuous
Data Using JMP: A Step-by-Step Guide
by Jose Ramirez, Ph.D., and Brenda S. Ramirez, M.S.

Based on real-world
applications, Analyzing and
Interpreting Continuous Data
Using JMP: A Step-by-Step
Guide, by Jose Ramirez, Ph.D.,
and Brenda S. Ramirez, M.S.,
combines statistical
instructions with a powerful
and popular software platform
to solve common problems in

engineering and science. In the many case studies
provided, the authors clearly set up the problem,
explain how the data were collected, show the analysis
using JMP, interpret the output in a user-friendly way,
and then draw conclusions and make
recommendations. This step-by-step format enables
users new to statistics or JMP to learn as they go, but
the book will also be helpful to those with some
familiarity with statistics and JMP. The book includes
a foreword written by Professor Douglas C.
Montgomery.

About the Authors
We are industrial
statisticians each with more
than fifteen years of
experience working closely
with engineers and scientists
to help them ‘make sense of
data’. We view statistics,
combined with a powerful
visualization soft-ware, as a catalyst for discoveries and
insights that help bring new products to market, sustain
manufacturing operations, and guide process
improvements. We are avid users of JMP and SAS. Visit
our blog at

http://statinsights.blogspot.com/

10

The New Heroes of Commerce?
Chuck Pirrello, JMP Division of SAS Institute

A growing number of heroes are rising up from their
cubicles at many companies. They provide that sought
after competitive edge in these trying economic times.
Yet, only the most enlightened companies fully embrace
them. In fact, most people find them intimidating.

Who are these heroes of commerce, praised by some
and feared by others? They are The Statisticians.
Some have described statisticians as numbers people
who “don’t have the personality to be accountants.”
But statisticians are becoming valued for their work in
a discipline that causes many an executive’s eyes to
glaze over.

According to Ian Ayres, author of the book Super
Crunchers (2007) “there’s a war going on between
traditional experts, who make decisions based on
limited historical data and intuition,” and a new breed
of statistician, whom he calls Super Crunchers.

Super Crunchers crunch large (VERY LARGE) data-
bases to find trends and patterns in their organizations’
data and produce golden nuggets of insight from
everything ranging from their customers’ buying habits
and profitability to waste in their value chain.

Businesses are starting to understand the power of
statistics to support their critical decisions. Never
before has it been possible to analyze such large
databases and quickly discover information that can
have a vast impact on an organization and its
customers.

One of my favorite examples from Ayres’ book is that
of an online travel site called Farecast.com. This site
was started by a professor who was upset to find that
plane passengers sitting right next to him had paid far
less for their tickets than he had paid. He decided to set
up a web site and use statistics to predict whether fares
were trending up or down.

When you go to Farecast.com and search for airfares to
your desired destination, it tells you whether the fares
are expected to rise or fall over the next seven days. The
amount of data it crunches is massive. Not only does it
factor in historical prices, but also the time of year you
are traveling, whether it’s during a holiday, or if there is
a big event at your destination like the Super Bowl or
Mardi Gras. Farecast can even displays how confident it
is in that prediction. Because it can predict

where fares are headed, Farecast.com has obtained a
superior competitive advantage.

Google is another great example of using predictive
statistics on huge amounts of data. If Bill Gates searches
using the word “Blackberry,” he’ll get a list of
technology sites about RIM’s BlackBerry. But if Martha
Stewart enters the same search word, Google is likely to
show her food or cooking sites.

So what does it mean for more companies to incorporate
statistics in their business decision-making? With help
from statisticians, they can to crunch more data than
ever before, interpret the results, and predict more
confidently. It’s possible for a company to make
decisions that focus on their operations, increase market
share, and make them more profitable. And maybe
statisticians will start to be valued for their brains and
talent rather than being just a stereotyped personality.

Reference
Ayres, Ian (2007), Super Crunchers: why thinking by numbers

is the new way to be smart, New York: Bantam Dell, A
Division of Random
House, Inc.

Meet Chuck Pirrello
Chuck is a Product Manager at
JMP, where he drives the
development and marketing of
JMP to the business community,
focusing on JMP’s capabilities for
interactive data visualization and
exploration.

Quick Tip
Q: I am doing a cell plot for dozens of categorical
columns from survey data. The columns all have the
same categories, but not all columns have all the
categories, so the cell plot colors them inconsistently.
How can I make the colors consistent?

A: Cell Plot has a Scale Uniformly option, but this
applies only to numeric variables. For category
variables, use Column Properties as follows.

1. Highlight the categorical columns you want to use
for the cell plot.

2. Select Cols > Standardize Attributes.
3. In the window that appears, select Value Colors

from the Column Properties menu.

4. Customize the colors as desired, and click OK.
The next Cell Plot on this data presents the columns
consistently, using the value colors you specified.

11

Instrument Measurement Linearity
Tonya Mauldin, JMP Division of SAS Institute

If you work with instruments that take measurements,
there can be a myriad of potential problems. Some of
these problems are with the instrument itself, such as:

• Need for calibration

• Damaged instrument

• Poor quality instrument

• Need for cleaning

What is a linearity study?
One tool that can help uncover problems like those
listed above is a linearity study. A linearity study tracks
the variation between measurements to a known
standard throughout the expected operating range. A
well working and appropriately used gauge (measuring
device) should have constant bias throughout the
expected operating range. Said another way, you expect
that the measuring device can measure small values and
large values with the same amount of accuracy.

How to perform a linearity study
To perform a linearity study, you need two basic pieces of
information:

• Known standards or truths

• Measurements from the device that cover the full
operating range

The Measurement Systems Analysis Reference Manual
(MSA) third edition (2002) suggests obtaining a
minimum of five different parts whose measurements
span the operating range. These parts are what you
measure for the linearity study. They can be different
sized washers, concentration, a pH value, etc. A reference
or standard value must be determined for these five parts.

Some possible ways of determining reference or standard
values are to
• use devices in your master tool room

• send out the samples to another lab that has better
precision than your lab

• obtain reference standards from the National
Institute of Standards and Technology (NIST)

Each of the five parts should be measured at least ten
times on the gauge of interest by your expert operator.

An expert operator is one that uses this gauge on a
regular basis and obtains the most accurate
measurements. The parts should be randomly selected
to minimize bias.

Example
Suppose a new measurement system is under considera-
tion for a manufacturing plant that produces washers.
The goal is to determine if the new gauge accurately
measures washers (parts) across the operating range. Five
differently sized washers were chosen throughout the
operating range of the measurement system. A reference
value was determined for each washer using a layout
inspection. Each washer was then measured twelve times
by the expert operator using the new gauge. The washers
were randomly selected in order to minimize bias. The
old measurement system that is currently in place has a
known sigma of 2.75613.

To see the results of this example, open the JMP table
named MSALinearity.jmp, found in the Variability
folder in the Sample Data installed with JMP. To
perform a linearity study, do the following

1. Select Graph > Variability/Gauge Chart.

2. In the launch window, select Response as the Y,
Response variable.

3. Select Standard as Standard.

4. Select Part as X, Grouping.

5. Click OK.

When the results appear, click the red triangle on the
Variability Gauge title bar and select Gauge Studies >
Linearity Study. (Figure 1)

Figure 1 Select Gauge Studies > Linearity Study

12

You are then prompted to specify the Process Variation,
which is used to compute linearity. The value for
process variation is 6*historical sigma (6 * 2.75613 =
16.5368). Therefore, enter 16.5368 into the box for
process variation and click OK. You should see the
results shown in Figure 2.

Interpreting the results
A linearity study is a linear regression analysis using the
standard (reference) variable as the X variable, and bias
as the Y variable. You hope to see a slope of 0 giving a
horizontal regression line. A slope of 0 means there is
no relationship between the size of the washer (part)
and the ability to measure the washer.

The regression line in Figure 2 does not appear
horizontal and the p-value (Prob > |t|) for the test that
the slope is 0 is less than 0.0001. This means you reject
the null hypothesis and conclude that the slope is not 0.
In practical terms, this means that there is a
relationship between the size of the washer and the
ability to measure the washer.

In this example, the absolute bias is greatest at the two
extremes of the operating range (2mm and 10mm).
The bias for the smallest washer (Part 1, 2mm) is a
positive bias of 0.49167 and the bias for the largest
washer (Part 5, 10 mm) is the negative bias of
–0.61667. The smallest absolute bias occurs in the
middle of the operating range (Part 3, 6mm) with a
bias of 0.02500.

This new gauge is good at measuring washers in the
middle of the operating region (6mm), but not very
good at measuring washers that are at the extremes of
the operating region (2mm and 10mm). It appears that
the measuring device needs to be recalibrated to achieve
near zero bias across the operating range before the new
measurement system can be implemented.

References
SAS Institute Inc. (2008), JMP Statistics and Graphics Guide, Cary,

NC: SAS Institute Inc.

ASQC Automotive Division/AIAG (2002), Measurement Systems
Analysis Reference Manual, 3rd Edition, AIAG.

Figure 2 Results of the Linearity Study for the Washer Measurement Data

13

What about 3-D Pie Charts?
Russ Wolfinger, JMP Genomics Division, SAS Institute

Many of us are faithful left-brained statisticians and
scientists who make every attempt to adhere to the highest
professional standards of data visualization and analysis. We
acknowledge that graphics luminaries like Edward Tufte
and Stephen Few have made very valuable contributions to
the field. We know the commandments from the graphics
experts: Keep it simple—Avoid chart junk—Let the data
shine through—Favor linear over spatial comparisons—
Eschew volumetric distortion—Wield Ockham’s Razor—
and so on. 3-D pie charts are the worst offenders and have
long ago been banished to graph purgatory.

Figure 1 compares a standard bar chart to a 3-D pie
chart. The purpose of both charts is to quickly and
effectively convey the dominant sources of variation in
a microarray experiment. The script to create 3-D pie
charts was created by a summer intern, Jong-Seok Lee
and is included with this newsletter on our web site.

Without doubt, the bar chart has more detail and
nicely uses linear instead of spatial comparison. It’s a
great graph and in fact is the default one shown for
such analyses in JMP Genomics.

Pie charts are considered technically inferior, so why
won’t they go away? And, why would a 3-D pie chart
be appealing to some people? The pie chart below does
use color aggregation, has 3-D flair, and labels its
major categories. In addition, there is interactivity. It’s
a spinnable graph that comes complete with slider bars
that let you adjust degree of explosion and shininess.
You can download the script and try it for yourself.

Perhaps the pie chart appeal has something to do with
philosophical presuppositions. Dutch philosopher
Herman Dooyeweerd and colleagues have extensively
discussed 14 Aspects of Reality arranged in a specific
order:

1. Numerical 8. Cultural-historical
2. Spatial 9. Social
3. Kinematic 10. Economical
4. Physical 11. Aesthetical
5. Biotical 12. Juridicial
6. Sensitive-psychical 13. Ethical
7. Logical 14. Fiducial

They make a convincing case that these ordered
aspects are irreducible in the sense that you cannot
eliminate any of them without getting into
irrecoverable binds and self-refuting contradictions.
Furthermore, nearly all philosophical conflicts
throughout history have arisen from different attempts
to make one of these aspects the divine/ultimate one
upon which all others depend. Such reductions have
often turned Ockham’s Razor into Sweeney Todd’s.

With reference to the bar and pie charts in Figure 1,
the bar chart relies primarily on the numerical, spatial
and logical aspects, whereas the interactive pie chart
adds aesthetics and kinematics. These latter two
aspects make a big difference and enable the pie chart
to connect with the viewer on more levels.

We’re naturally drawn to things that are beautiful and
exhibit pleasing colors, symmetry, and interactivity.
We travel the world to engage with captivating
wonders and works of art, both natural and man-
made. We often reward business professionals and

Figure 1 Comparison of Bar Chart and 3-D Pie Chart

14

politicians who build their careers not on the sub-
stance of their message, but by the elegance and flair
with which they convey it.

The pie chart also offers a biotic connection to various
round delectables—mom’s apple pie, pizza, cheese-
cake, and even quiche. It appears that we are
environmentally conditioned to be sorely tempted by
the 3-D pie chart, however evil it might be.

You can read this article as a blog on our web site,
along with a plethora of replies, and reply yourself if
you want to.

The blog commenters were merciless and the dialog is
interesting. Here is an excerpt:
“I have to disagree strenuously with this article. 3-D
graphics are misleading. …you gloss over the
‘volumetric distortion’ without ever noting that this
makes 3-D pie charts misleading. I note that you failed
to compare the bar chart to the 2-D pie chart, which
also does a better job than the bar chart; nor did you
compare your 3-D pie chart to a 2-D pie chart. In
either case, the 2-D pie chart wins for effective
communications (see Figure 2). 3-D charts are a
triumph of form over substance.”

In the words of another commenter:
“…A simple bar graph that is sorted and colored can
produce useful insight. You can easily see 4 groupings:
the 2 at about 50%, the 2 at about 2%, the 2 at about
2%, the 2 at about .2% and the 3 at 0%. You can also
visually see the 5% difference between the top two
(See Figure 3). Can you see these things looking at
your 3-D pie chart?”

Figure 2 2-D Pie Chart

One other comment deserves an explanation:

“I use JMP software almost every day and I love it. It is
the Swiss army knife of analytics software. But in one
particularly important area, it falls flat, and I think that
shortfall may have led you to wander down the dark
path to the pie chart. In JMP it is not possible to easily
sort a bar chart by the values of the bars.”

Yes it is possible and not difficult! Figure 3 shows a bar
chart done using Graph > Chart. It is sorted and
colored by Variance Component. For character columns
(such as the Variance Component column), this is done
by assigning column properties.

• Use Cols > Column Info for Variance Component.

• select Value Ordering from the Properties menu
on the Column Info dialog, and order the values
any way you want them to appear in plots and
charts.

• Use the Value Ordering property to color the bars.
There is a default set of colors or you can choose
your own colors.

If there are too many rows to arrange quickly in a
Value Ordering list, first use Tables > Sort to sort by
Weighted Average and then apply the Row Order
column property to preserve the table order of the
rows in the bar chart.

The 2-D bar and pie charts are indeed effective
presentations of the data. However, in this particular
example the bar chart doesn’t really need color to
effectively convey its information. The mono-color bar
chart in Figure 1 is sufficiently informative and
esthetically neater.

Figure 3 Colored Sorted Bar Chart

15

Expression Handling Functions: Part I
Unraveling the Expr(), NameExpr(), Eval(), ... Conundrum

Joseph Morgan, JMP Division of SAS Institute

Many beginning and intermediate JMP Scripting Language
(JSL) programmers are unaware of the power of abstraction
available from JSL expressions. Such meta-programming
constructs are not always available in widely used
programming languages such as C++ but are commonly
found in functional programming languages such as Lisp.
As it turns out, such constructs are particularly useful when
the application being developed is complex. They facilitate
process abstraction. Robert Sebesta (1999) describes
abstraction:

“The ability to define and then use complicated
structures or operations in ways that allow many of
the details to be ignored. The degree of abstraction
allowed and the naturalness of its expression is
important.”

This article attempts to unravel the mystery surrounding
JSL expression handling functions and show how such
functions can be used to solve nontrivial JSL programming
challenges.

JSL Expressions
What exactly is a JSL expression? Chapter 3 of the JMP
Scripting Guide (JSG) defines JSL expressions thus:

“A JSL expression is any combination of variables,
constants, and functions linked by operators that can
be evaluated.”

The key phrase here is “... that can be evaluated.” This
means that each of the following is a JSL expression.
100.1 //numeric literal
"string literal" //string literal
x //variable (or name)
x & (y | z) //logical expression
z*2 + z^2 -10 + pi() //arithmetic expression

However, more complex examples like the following are
also JSL expressions.
x = [];
for(i=1, i<=5, i++,
 x ||= random uniform(); show(x)
)

Although the term script is often used to refer to an example
like this, it is really just an expression. Remember that the
semicolon “;” is the glue operator that returns the value of
its right-most argument. A script is nothing more than a
single glue() function call with expressions as its
arguments. To see this, notice that the previous example is
equivalent to the following glue() function call.

glue(assign(x, []),
 for(assign(i, 1),
 less or equal(i, 5),
 post increment(i),
 glue(concat to(x,
 random uniform()
),
 show(x)
)
)
)

Hence, a JSL expression may be as simple as a literal or
variable, but could be as complex as a script.

What is an Expression Handling Function?
A useful way to think of expression handling
functions is as the set of JSL functions that
enables you to regard expressions as data.

Functions such as Expr(), NameExpr(), Eval(),
Function(), and Recurse() allow you to assign
expressions to variables for later retrieval and possible
evaluation. There are also functions that allow
expressions to be assembled, disassembled, and probed.
Insert() and Remove() are two of several functions
that may be used to assemble and disassemble
expressions whereas Arg() and Head() are intended for
probing. JMP offers a full complement of these
functions thus ensuring that JSL programmers can
easily realize the abstraction by Sebesta (1999).

These functions (see Table 1) fall into two categories:
those that evaluate their arguments when invoked and
those that do not. The best way to understand this
difference is to experiment with these functions. To
follow along, launch JMP and run the code fragments
presented in the following sections.

Table 1 JSL Expression-Handling Functions
Evaluate Arguments Do Not Evaluate Arguments

Parse() Expr()
Eval() NameExpr()
EvalList() EvalExpr()
Function() Arg()
Recurse() NArg()
Substitute()/SubstituteInto() Head()
Remove()/RemoveFrom() HeadName()
Insert()/InsertInto()

16

Expression Handling by Example
The following questions were real problems presented by JSL
programmers who had a task they were trying to complete. These
challenges are not intended to represent the range of questions a typical
JSL programmer is likely to face, but they comprise a series of typical
and commonly encountered questions.

1. The Substitute() vs. SubstituteInto() Question
Suppose you want to write a script that invokes the distribution
platform but the column to be analyzed is stored in a variable. In cases
like this, the Substitute() or SubstituteInto() function may be
used but it is sometimes not clear which one should be used.

For example, the following script uses Substitute() to replace colx,
with weight, but fails.

//script 1
stmt = Expr(distribution(column(colx)));
x = "weight";
Result = Substitute(stmt, Expr(colx), x);
show(stmt); show(Result);

If you execute this script, the log shows:

Not Found in access or evaluation of 'distribution' ,
Bad Argument({colx}), distribution(Column(colx))

Because Substitute() evaluates its arguments, it attempts to evaluate
stmt, but fails because colx does not exist. One solution is to
properly quote the first argument of Substitute(). That is, use
NameExpr() to retrieve the value of stmt.

//script 1 - revised
stmt = Expr(distribution(column(colx)));
x = "weight";
Result = Substitute(NameExpr(stmt),Expr(colx),x);
show(stmt); show(Result);

Now, execute this revised script to see the value of stmt and Result
displayed in the log.
stmt:distribution(Column(colx))
Result:distribution(Column("weight"))

Alternatively, SubstituteInto() may be used. The difference is that,
unlike Substitute(), SubstituteInto() does not evaluate its first
argument but simply updates it in place.

//script 2
stmt = Expr(distribution(column(colx)));
x = "weight";
SubstituteInto(stmt,Expr(colx), x);
show(stmt);

When you execute this script, the result in the log is

stmt:distribution(Column("weight"))

Summary Points
Point 1:
A common JSL mistake is to assume that
executing Expr(x) is equivalent to executing
NameExpr(x). Indeed, in the following
example, these two statements return the
same thing.

 Expr(4 + 35)
 NameExpr(4 + 35);

If you execute them one at a time, the log
shows,
 Expr(4 + 35);
 4 + 35
 NameExpr(4 + 35);
 4 + 35

The result is the same for both statements.
Expr(x) returns its argument unevaluated
and NameExpr(x) returns the value of its
argument unevaluated. The argument to
NameExpr(x) should be a variable, but when
it is an expression it simply returns its
argument.

Consider the next statement.

 x = Expr(2 + 50);

When you execute this statement the
expression 2 + 50 will be stored in x.

Now consider the following statements.

 Expr(x);

 NameExpr(x);

Execute each statement and look at the log.

 Expr(x);

 X
 NameExpr(x);

 2 + 50

Since Expr() returns its argument
unevaluated, the name x is returned, whereas
NameExpr(x) returns the value of its
argument unevaluated — 2 + 50.

Point: Executing Expr(x) is not equivalent
to executing NameExpr(x).

17

2. Obtaining Distinct Items From a List
Suppose you have a sorted list and want to retrieve only distinct items.
There is no JSL function to accomplish this, but it is easy to script a
solution.

Consider the following two lists.

Things = {"apple", "apple", "apple", "cat", "cat", "cat",

"golden", "grape", "mango", "mango", "silver",

"silver"};

Numbers = {1,200,200,200,400,400};

One approach is to iterate over items in each list and pick out the
distinct items as the iteration progresses. However, here is an alternative
and compact solution that illustrates the EvalList() function.

indx = {};

indx[1 :: NItems(Things)] =

 Expr(0 == i++ | Things [i - 1] != Things [i]);

 i = 0;

distinctlst = Things [Loc(EvalList(indx), 1)];

Note that the second statement creates a list of logical expressions and
that this list contains the same number of items as the sorted list. Each
expression is intended to compare the corresponding entry in the sorted
list to the item at its left. When evaluated (by EvalList() in the fourth
statement), each expression in the list evaluates to either true or false.
The Loc() function in the fourth statement converts this list of 0s and
1s into a vector of indices that retrieves the distinct items.

The following function is a more robust solution.

distinct list = Function({lst},

 Local({indx = {}, i = 0},

 If(Is List(lst),

 If(N Items(lst) < 2,

 lst,

 indx[1 :: NItems(lst)] =

 Expr(0 == i++ | lst[i - 1] != lst[i]);

 lst[Loc(EvalList(indx), 1)];

)

)

)

);

Calling the function with the list as its argument gives the following
unique items.

Distinct List(Things);

{"apple", "cat", "golden", "grape", "mango", "silver"}
Distinct List(Numbers);
{1, 200, 400}

Summary Points
Point 2:
When using the Eval() function, a
common mistake is to assume that
executing Eval(x) is equivalent to
executing x. This mistake can be easily
made if you examine examples like the one
below, where the second and third
statements produce the same results.

 x = Expr(4 + 25);
 x;

 Eval(x);

The first statement stores the expression
4 + 25 in x. If you execute the second and
third statements in turn, you see the
following in the log.

 x;
 29

 Eval(x);

 29

However, what if the first statement was a
nested Expr() function as in the example
below.

 x = Expr(Expr(4 + 25));
 x;

 Eval(x);

Note that, for this example, the first
statement stores the expression
Expr(4 + 25) in x. If you execute the
second and third statements in turn, you
see the following in the log.

 x;

 4 + 25
 Eval (x);

 29

The results are now different.

Point: Executing Eval(x) is not
equivalent to executing x.

18

3. The Literal Argument Challenge
Suppose you are interested in creating a dialog that
contains several outline nodes, each of which contains
hyperlinks to different data tables (see Figure 1). The
Sample Data Index found in the JMP Help menu is an
example of such a dialog.

Figure 1 Outline Nodes in Sample Data Directory

The following script illustrates how one of these outline
nodes could be built, using the JMP sample data index
as the example.

//Brute Force Method

New Window("Sample Directory",
Outline Box("Categorical Models",
Lineup Box(N Col(2), Spacing(0),
Button Box("Detergent",underline style(1),
Open("$SAMPLE_DATA/Detergent.jmp")),
Text Box("Nominal Logistic Regression"),
Button Box("Ingots2", underline style(1),
Open("$SAMPLE_DATA/Ingots2.jmp")),
Text Box("Logistic Regression"),
)));

This approach rapidly becomes unwieldy when adding
statements to construct more and more outline nodes,
each with multiple buttons. Instead, imagine a different
approach where the script iterates over a list of outline
node titles, data table names, and descriptions. As it
iterates over the list, it constructs the corresponding
dialog.

The following list of lists is for a two-node dialog.
// create a list of lists

sample = {
{"Anova",
 {"Blood Pressure", "Multiple Repeated

Measures"},
 {"Typing Data", "1-way Anova"}
},
{"Categorical Models",
 {"Detergent", "Logistic Regression"},
 {"Ingots2", "Nonlinear Probit Analysis"}}
};

Notice that each inner list consists of an initial entry,
which is the outline node title. It is followed by several lists
of pairs, where the first item is the data table name, and
the second item is a table description.

The following function builds the sample file dialog. The
addnode() function takes two arguments: the first is a
reference to a dialog box, and the second is a list. The
addnode()function is a nested loop that iterates through
the list and creates an outline node from the first entry in
each inner list. For each inner list pair, it creates a button
box with an associated open() script, along with the text
box that provides the button description. .

//Function to build sample file dialog

addnode = Function({ref, lst},
 For(x = 1, x <= N Items(lst), x++,
 ref << append(Outline Box(lst[x][1],
 lbx = Lineup Box(N Col(2),
 spacing(0))));
 For(y = 2, y <= N Items(lst[x]), y++,
 table = "$SAMPLE_DATA/" ||

 lst[x][y][1] || ".jmp";
 cmd = Expr(lbx << append(bbx =

 Button Box(lst[x][y][1],
 Open(Expr(table))))
);
 Eval(EvalExpr(cmd));
 bbx << underlinestyle;

 lbx << append(Text Box(lst[x][y][2])
);

);
)
);

To start, you need to first create a skeleton dialog to
contain the outline nodes and then addnode() is invoked.

//Create a panel box to contain nodes

New Window("Sample Files",

 pbx = Panel Box("Files categorized by
analysis"));

//Invoke Sample file function

addnode(pbx, sample);

Note that the append(Button Box(...)) message has
been cast as an expression, and that this expression
contains a sub-expression, Expr(table). When Eval
Expr(cmd) is evaluated, Expr(table) is replaced with
its value and, as a result, the value of table at the time of
button creation is preserved.

19

The ‘literal argument challenge’ in this script occurs in the way the
append(Button Box(...)) message is written. A common mistake is
to write the statement thus:

lbx << append(bbx = Button Box(lst[x][y][1],

 Open(table)));

instead of the correct expression in the script,

cmd = Expr(lbx << append(bbx = Button Box(

lst[x][y][1],

 Open(Expr(table)))));

Although the first statement appears to work, each button actually
opens the same data table. In fact, that button always open
Ingots2.jmp, which happens to be the last data table in the example
list. The problem is the table variable providing the name for each
button. Although table contains the correct data table name when
each button is created, its value after the dialog is created, and
therefore when any button is clicked, will be the last value that was
assigned to it.

Here is another correct option.

Eval(Substitute(

 Expr(lbx << append(bbx = Button Box(lst[x][y][1],

 Open(xxx)))),

 Expr(xxx), NameExpr(table)));

For this solution, the append(Button Box(...)) message has also
been cast as an expression, but it is used here as the first argument of
Substitute(). Recall that Substitute() evaluates its arguments
and NameExpr() returns the value of its argument unevaluated. So,
each time this statement is executed, Substitute() returns the value
of its first argument but with the value of table in place of the
pattern xxx. Therefore, the effect is the same as the correct solution
shown previously.

Concluding Comments
The primary purpose of these examples is to illustrate the use of several
expression-handling functions. A secondary purpose is to point out
common errors and misunderstandings that JSL programmers
sometimes experience when attempting to use these functions.
Hopefully, we have partly achieved that objective.

Reference
SAS Institute, Inc. (2008), JMP Scripting Guide, Cary, NC: SAS Institute, Inc.

Sebesta, Robert M. (1999), Concepts of Programming Languages, Addison Wesley,
Reading, MA.

Summary Points
Point 3:
Remember that EvalExpr() does not
evaluate its argument. It clones its
argument and replaces any Expr() sub-
expressions with their evaluated values.
Consider this example.
y = Expr (

Distribution(
 Column(Expr("X" || Char(i)))

)
);
i=3;
x = NameExpr(y);
EvalExpr(x);

As expected, statement 4 returns

Distribution(Column("X3")).

So, why not combine statement 3 and
statement 4? That is, replace the two
separate statements with:

 EvalExpr(NameExpr(y));

When this combined expression executes,
NameExpr(y) is returned. Note that
EvalExpr() does not evaluate
NameExpr(y); it simply clones it and,
since NameExpr(y) does not itself contain
Expr() sub-expressions, NameExpr(y) is
returned as is.

Point: EvalExpr() does not evaluate its
argument.

Point 4:
If you choose to nest Eval() functions,
think carefully about how the combined
statement will be evaluated. Since Eval()
evaluates its argument and then evaluates
the result, nesting n Eval() statements is
not equivalent to n instances of Eval().
Consider the following example.
x = Expr(Expr(Expr(Expr(1 + 2

))));
 Eval(Eval(x));
 y = Eval(x);
 Eval(y);

Try these statements yourself, executing
them one by one, and note the results in
the log.

Point: n nested Eval()statements is not
equivalent to n Eval() statements.

About JMPer Cable
A Technical Publication for JMP® Users
Issue 26 Winter 2010

Editor:
Ann Lehman

Winter 2010 Issue Contributors:
Xan Gregg, Mark Bailey, Tonya
Mauldin, Joseph Morgan, Chuck
Pirrello, José G. Ramírez, John Sall,
Russ Wolfinger

Subscribe Today
If you enjoy receiving JMPer Cable in
the mail, subscribe today! In the
future, only subscribers will receive
print copies of JMPer Cable. To avoid
missing even one valuable issue,
subscribe online at

www.jmp.com/jmpercable

You can also find JMPer Cable current
and back issues, along with their data
tables and scripts, online. It’s all at

www.jmp.com/jmpercable

For additional user resources, go to
www.jmp.com/community

To order additional licenses of JMP,
to learn about the most recent
release, or to inquire about content
of this JMPer Cable issue, call
1-877-594-6567

SAS and all other SAS Institute product
or service names are registered
trademarks or trademarks of SAS
Institute Inc. in the USA and other
countries. ® indicates USA registration.
Other brand and product names are
trademarks of their respective
companies. Six Sigma is a registered
trademark of Motorola, Inc. Copyright
©2009, SAS Institute Inc. All rights
reserved.

