Connecting Data to Decisions

How does a process development chemist initiate, assess, and evaluate a green chemistry approach to improve its sustainability goals?

As chemists (and scientists in general), the process's viability is measured empirically with a designed experiment. Viability is measured differently for each process.

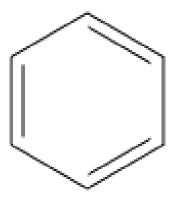
For some processes, it might be how waterproof a jacket is; for another, it might be how clean a surface is.

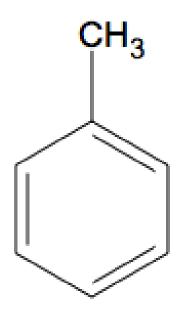
"Data" is what we use to determine this viability, and "modeling" that data is how we know which conditions to select in our decision-making process.

How To Drive Decisions in Green Chemistry

- No one is "against" green chemistry
- Many Stakeholders prefer to make data-driven decision.
- There is no single best solution
- There is necessarily some give and take in any selection

Optimization: understanding trade-offs


Process development chemists and others on the bench are engaged in identifying and communicating trade-offs.


A Fictional Example

Environtron is seeking a new greener solvent

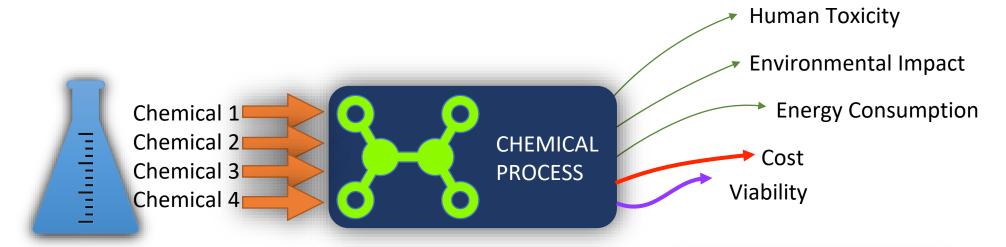
Benzene Carcinogenic

Toluene Alternative Candidate

Environstarts to wonder if they made the best choice

	Benzene	Toluene
Toxicity (Carcinogenicity)	Extreme	None
Material Cost	\$265,000/ year	\$703,000/year
Toxicity (reproductive?)	No Data	No Data
Material Scrap Cost	\$200,000/year	\$800,000/year
Processing time cost	Standard	20% longer
Environmental Impact	Low	Low

A new approach

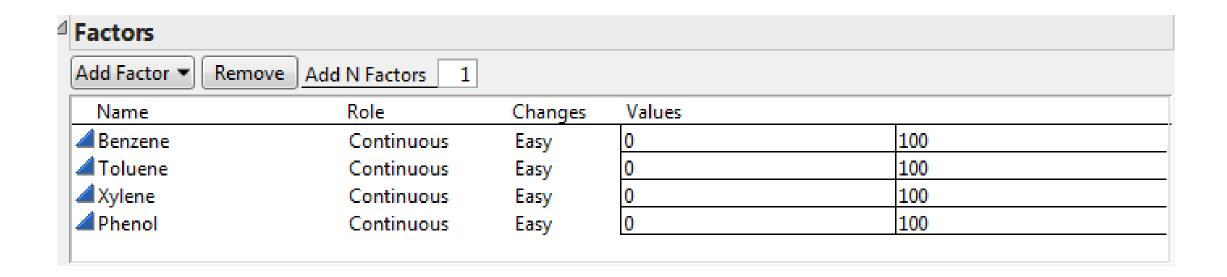

CREATE A BUSINESS CASE AND A TECHNICAL CASE

BUILD A MODEL BASED ON RESEARCHED DATA AND EXPERIMENTAL DATA

Build A Model

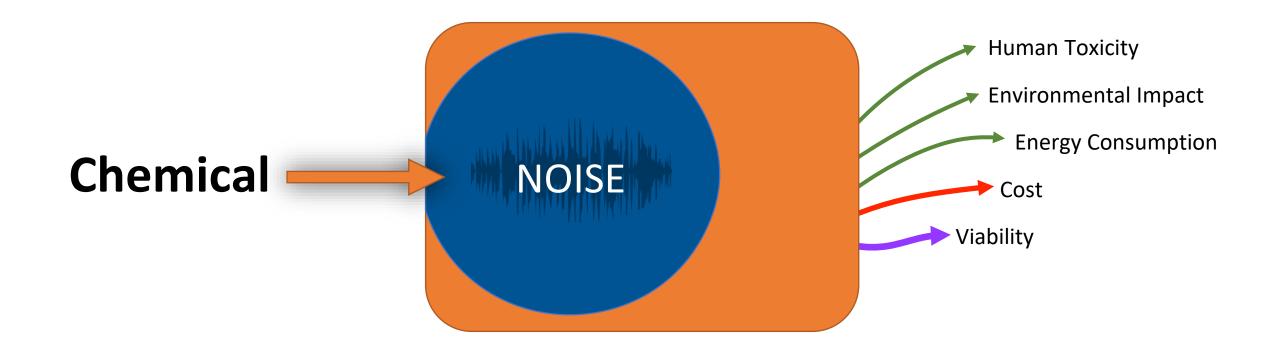
The link between data and decision is a model.

"All models are wrong, but some are useful" - George Box



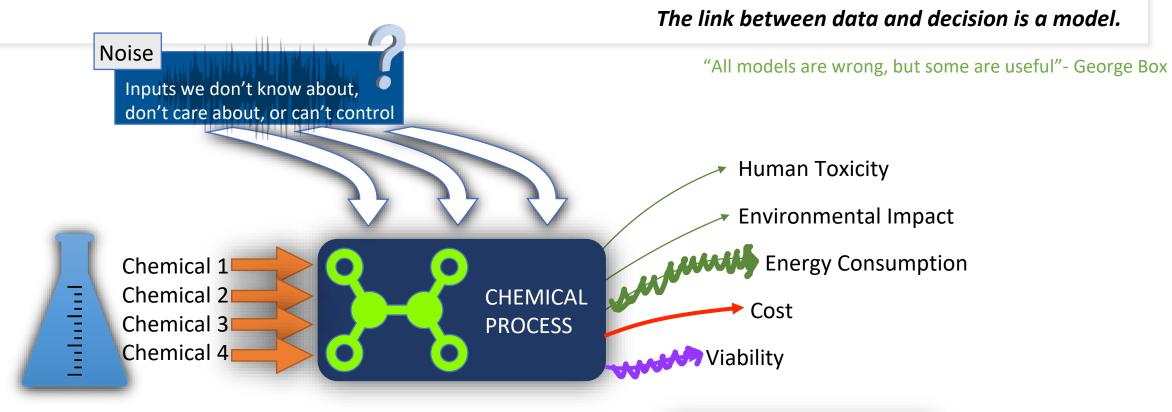
Outputs we can measure and care about

UNDERSTAND YOUR GOALS BY MAKING A RESPONSE TABLE


Response Name	Goal	Lower Limit	Upper Limit	Importance
Acute Toxicity	Minimize	1	4	10
Birth Defect	Minimize	1	4	10
Reproductive Harm	Minimize	1	4	8
Endocrine Disruption	Minimize	1	4	7
Cancer	Minimize	1	4	10
Brain/Nervous System Harm	Minimize	1	4	8
Persistant Bioaccumulative	Minimize	1	4	5
Flammability	Minimize	1	4	2
Aquatic Ecosystem Harm	Minimize	1	4	2
Land Ecosystem harm	Minimize	1	4	1
Cost (\$/gallion)	Minimize	2	20	7
Viability (% parts pass)	Maximize	0	100	10

IDENTIFY WHAT CHEMICALS YOU MAY WANT TO USE. THESE ARE YOUR FACTORS

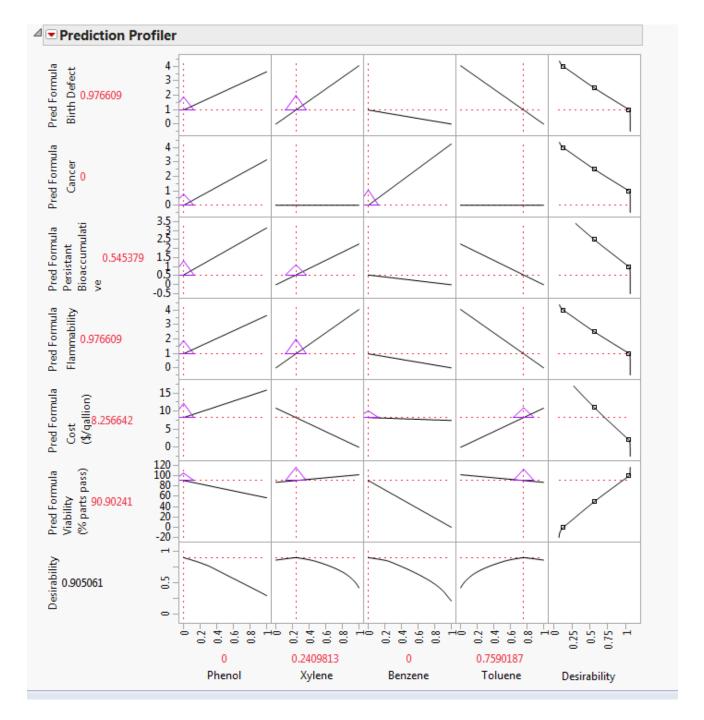
COLLECT THE DATA YOU CAN FROM RESEARCH AND GET THE REST BY RUNNING EXPERIMENTS

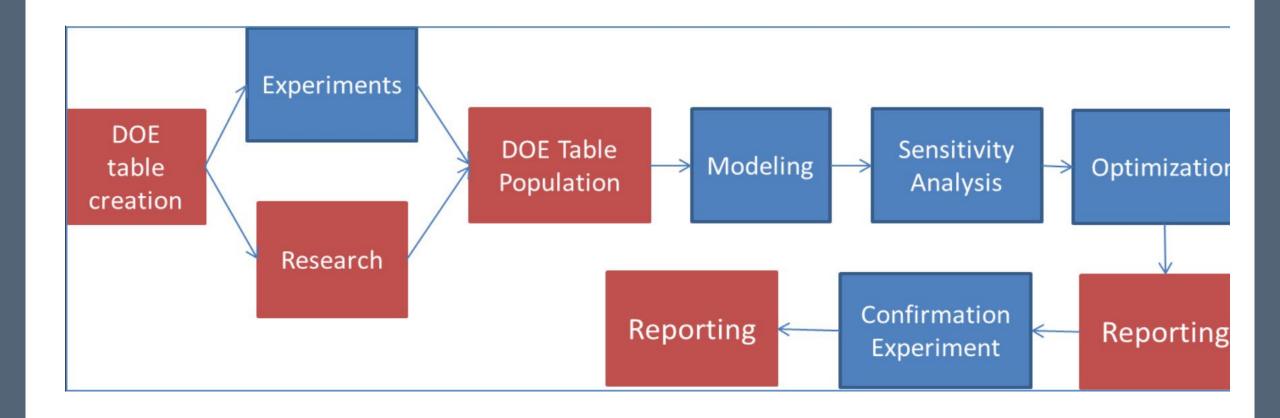

E An	alyze Gra							. O Mr. O	I 10111			ost Dat			-	
•	Benzene				Acute	Birt		Endocrine			Persistant		Aquati C	Land 	Cost (\$/ga	Viability (% parts
1	0.5	0.5	0	0	3	4	4	3	2.5	3	1	4	3	3	8	90
2	0.5	0	0.5	0	3	3.5	4	3	2.5	3	1.5	3.5	3	3	9	95
3	0	0	0	1	3	3	4	3	3	3	3	3	4	3	15	50
4	0	0.5	0	0.5	3	3.5	4	3	2	3	2	3.5	3.5	3		
5	0.5	0	0	0.5	3	3.5	4	3	3.5	3	2	3.5	3.5	3	10.5	75
6	0	1	0	0	3	4	4	3	1	3	1	4	3	3	10	80
7	0	0.5	0.5	0	3	3.5	4	3	1	3	1.5	3.5	3	3	11	85
8	0	0	0.5	0.5	3	3	4	3	2	3	2.5	3	3.5	3	13.5	70
9	0	0	0	1	3	3	4	3	3	3	3	3	4	3	15	50
10	1	0	0	0	3	4	4	3	4	3	1	4	3	3	6	100
11	0	1	0	0	3	4	4	3	1	3	1	4	3	3	10	80
12	0	0	1	0	3	3	4	3	1	3	2	3	3	3	12	90
						Hazard Data				Viability Data)		

Understanding Noise

We have more trust in signals that are greater than the noise

Understanding the Model





Responses

Outputs we can measure and care about

Create the Model and View Profiler

There are a few more steps

We still need to report the finding and then run confirmations experiments

Everyone Gets Some Green!

