Generalized Linear Mixed Models

What, Why and How

Timeline for GLMMs

- Mixed model issues appear in literature in 1930s (Yates)
- Mixed models named as such appear in 1950s
- □ Widespread applicability of mixed models not fully appreciated until 1980s
- □ Viable mixed model software available in 1990s
- □ Generalized linear models appear in literature in 1970s
- ☐ Generalized + mixed linear model literature in 1990s
- ☐ Viable GLMM software appears mid-to-late 2000s
- Appreciation of widespread applicability of GLMM still a work in progress

Nebraska Lincoln Department of Statistics

Classic Statistical Model F

resp

systematic +

Setting for Statistical Models

el Format:		systematic/	explanatory	random/residual		
random/resi respo	dual nse variable	Categorical (ANOVA) $\mu + \tau_i$	continuous (regression) $\beta_0 + \beta_1 X$	model effects	Residual error structure (e.g. serial/spatial)	
Gauss	ian (normal)					
_	discrete proportion binomial multinomial					
Non- Gaussian -	continuous proportion beta					
	count Poisson negative Binomial					
_	time to event					
_	etc					

etc....

Classic Statistical Model

respo

systematic + I

Setting for Statistical Models

l Format:			systematic/	explanatory	ran	dom/residual
ponse = random/resi	dual		Categorical	continuous	model	Residual error structure
response variable		$\mu + \tau_i$	$\beta_0 + \beta_1 X$	effects	(e.g. serial/spatial)	
Gauss	s ian (n	ormal)	classical A	Model NOVA and ession		
	pr I	discrete oportion binomial ultinomial				
Non-		ntinuous oportion beta				
Gaussian -		count Poisson tive Binomial				
_	tim	e to event				

Nebraska Lincoln Department of Statistics

Classic Statistical Model

respo

systematic + I

Setting for Statistical Models

el Format:			systematic/explanatory		random/residual	
ponse = random/resi	idual		Categorical	continuous	madal	Residual error
respo	nse va	riable	$\mu + \tau_i$	$\beta_0 + \beta_1 X$	model effects	structure (e.g. serial/spatial)
Gauss	s ian (n	ormal)		Linear Mixed	Model (LIV	IM)
	pr	discrete oportion binomial ultinomial				
Non- Gaussian		ntinuous oportion beta				
Gaussiaii		count Poisson tive Binomial				
	tim	e to event				
•		etc				

Department of Statistics

Classic Statistical Model Format:

response =

systematic + random/residual

Setting for Statistical Models

systematic/explanatory		ran	dom/residual	
	Categorical	continuous		Residual error
			model	structure
	$\mu + \tau_i$	$\beta_0 + \beta_1 X$	effects	(e.g. serial/spatial)

response variable **Gaussian** (normal) discrete proportion binomial multinomial continuous proportion Nonbeta Gaussian count Poisson negative Binomial time to event etc....

Generalized Linear Mixed Model (GLMM)

Department of Statistics

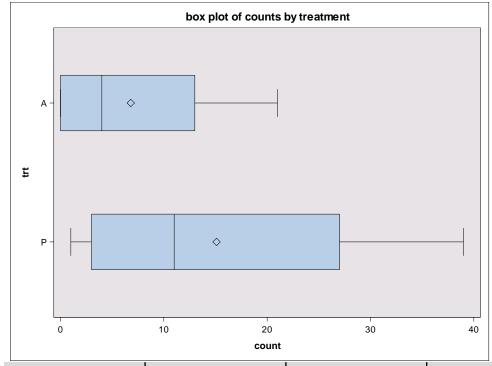
Defining Elements of GLMM

- ☐ Link function = linear predictor
- $\Box \eta = g(\mu) = X\beta + Zb$
- \square β denotes fixed (ANOVA or regression) effects
- \Box b denotes random model effects, assume $b \sim N(0, G)$
- y denotes observations
- $\Box y|b\sim\mathfrak{D}(\mu,\Sigma)$
- □ linear predictor is mixed model; D and link function accommodate non-Gaussian data

Why GLMMs - Motivating Examples

- Main issues are target of inference & accuracy of inferential statistics
- Example 1
- Paired Comparison Experiment:
 - a.k.a. Randomized Complete Block Design
 - 10 Pairs / Blocks
 - 2 Treatments "Treatment 0", "Treatment 1"
 e.g. "control" & "test"; "A" & "P"
 - Response: count
 - e.g. number of events / claims / defects = 0,1,2,...

Example 1: The Data

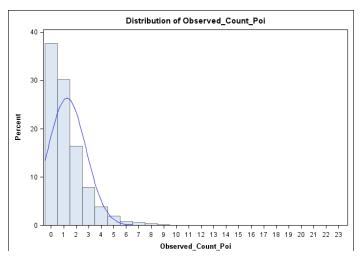


Treatment	Mean	Variance	Median
Α	6.80	61.7	7.86
Р	15.1	193.9	13.92

Count Distributions?

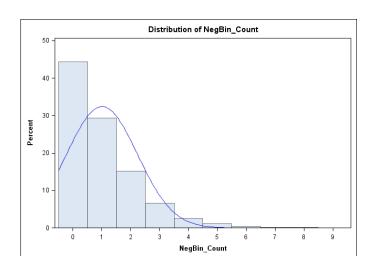
Poisson

$$\lambda = 1$$

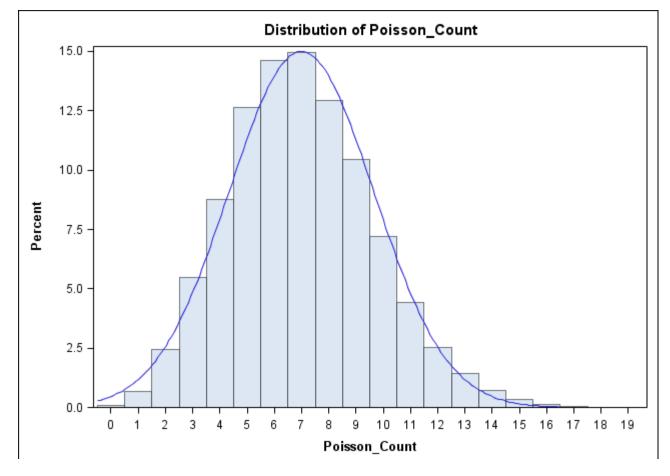


Negative Binomial

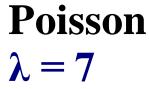
$$\lambda = 1$$
; $\varphi = 0.5$

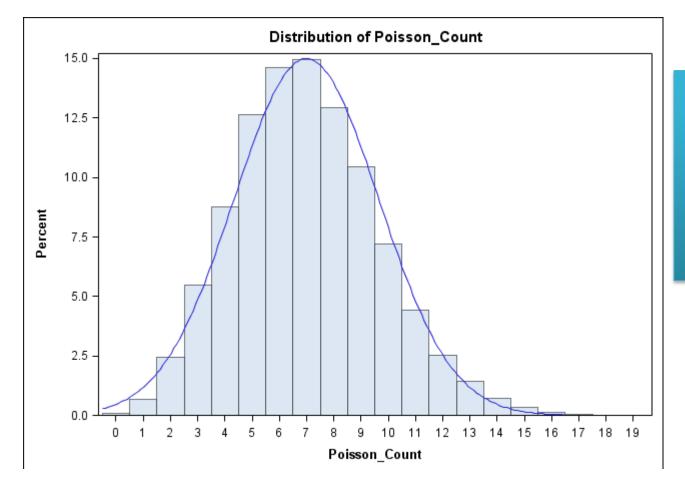


Count Distributions?



Count Distributions?





Doesn't this imply count ~ approx Normal ⇒ **ANOVA** with **count** as response variable okay?

Linear Model for RCBD Count Data

- ANOVA → "general" linear model for RCBD
- Model: count = intercept + trt + block + resid

$$count_{ij} = \mu + \tau_i + b_j + e_{ij}$$

☐ You can implement ANOVA using linear mixed model (LMM) software

Example 1 - Analysis 1 – ANOVA

Source	d.f.	MS	F	Pr>F
block	9	180.9		
treatment	1	344.5	4.61	0.0603
error	9	74.7		
Total	19			

Estimates of Treatment Means

Std Error	Estimate	Treatment
2.73	6.8	Α
2.73	15.1	Р

??Poisson → mean=variance??

Neg Bin → mean ∝ variance

Problems using LMM $(y = X\beta + Zb + e)$ for count data

- Assumes $\mathbf{X}\widehat{\boldsymbol{\beta}}$ estimates $E(y) = \lambda$
- $\hat{\lambda}$ must be ≥ 0
- No guarantee $X\hat{\beta} \ge 0$ e.g. regression provides easy examples
- Logical issues

$$E(y|b) = \lambda$$
$$Var(y|b) = \lambda$$

$$E(y|b) = X\beta$$

$$Var(y|b) = \sigma^2$$

LMM assumptions applied to ANOVA

- with count data, "Residual" has no meaning
- We need a better approach

Possible Models – Count Data

- Normal Approximation
 - $y_{ij} = \mu + \tau_i + b_i + e_{ij}; b_i iid N(0, \sigma_b^2); e_{ii} iid N(0, \sigma^2)$
 - standard ANOVA model
- Variance Stabilizing Transformation
 - $-\log(y_{ii}) = \mu + \tau_i + b_i + e_{ii} \log(y_{ii} + 1)$ if there are zeros
 - $\sqrt{y_{ij} + \frac{3}{8}} = \mu + \tau_i + b_j + e_{ij}$
 - variance stabilizing transformation standard pre-GLMM
- Poisson Generalized Linear Mixed Model (GLMM)
 - $y_{ij}|b_i \sim Poisson(\lambda_{ij}); b_i iid N(0, \sigma_h^2)$
 - $-\eta_{ij} = log(\lambda_{ij}) = \eta + \tau_i + b_i$ "Naive model"
 - $-\eta_{ij} = log(\lambda_{ij}) = \eta + \tau_i + b_i + u_{ij}; u_{ij} iid N(0, \sigma_u^2)$ better we'll see why

Determining an Appropriate Model

- Types of Blocked Designs
 - ➤ Multi-location, multi-center, multi-clinic
 - > Matched pairs
 - > Before and after on same subject
 - > Field plots
 - > etc.
- **Visualization**

Treatment design		
Trt 1	Trt 2	

"Experiment" (study) design			
Block	Uı	nit	
1			
2			
3			
4			
10			

Full design				
Block Unit				
1	trt 1	trt 2		
2	trt 2	trt 1		
3	trt 2	trt 1		
4	trt 1	trt 2		
••••				
10	trt 2	trt 1		

motivating a better approach

Repurposed ANOVA

Experiment		Treatment		Combined	
Source	d.f.	Source	d.f.	Source	d.f.
block	9			block	9
		trt	2-1=1	trt	1
unit(block)	10×(2-1)=10	"parallels" (Yates, Fisher, 1935)	18	unit(block) trt a.k.a. "residual" a.k.a "block x trt"	10-1=9
Total	19	Total	19	Total	19

Repurposed ANOVA and Sensible Model

sensible model → one-to-one ANOVA effect – model parameter match

LMM Linear predictor for blocked design includes **block** and **treatment** effect However, LMM also accounts for unit variation. If GLMM mimics LMM literally, trouble

combined	t	model			
Source	d.f.	LMM	naive GLMM	GLMM accounting for unit effect	
block	9	b_j	b_j	b_j	
treatment	1	$ au_j$	$ au_j$	$ au_j$	
unit(block) block x trt "residual"	9	e_{ij} or σ^2	overdispersion likely	bt_{ij} (or u_{ij})	
total	19				

overdispersion: model fails to adequately account for variation in data usual consequence: confidence intervals too narrow; type I error rate 1

Repurposed ANOVA to determine appropriate model

Combined		
Source	d.f.	
block	9	
trt	1	
unit(block) trt a.k.a. "residual" a.k.a "block x trt"	10-1=9	
Total	19	

$$b_j \sim N(0, \sigma_b^2)$$

$$unit_{ij} \equiv bt_{ij} \sim N(0, \sigma_u^2)$$

$$y_{ij}|b_j,bt_{ij}\sim Poisson(\lambda_{ij})$$

resulting linear predictor

$$\eta_{ij} = log(\lambda_{ij})$$

= $\eta + \tau_i + b_j + bt_{ij}$

resulting estimate of λ_i is $exp(\hat{\eta} + \hat{\tau}_i)$ (called **inverse link**)

Distributions imply Target of Inference

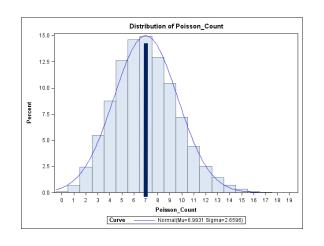
$$Y \mid b \sim Poisson(\lambda = 7)$$

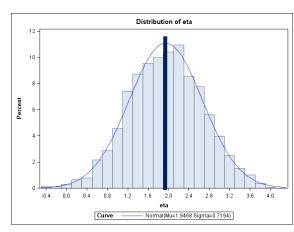
$$b \sim NI(0, \sigma_b^2)$$

$$g(\lambda | b) = \eta + \tau_i + b_j + (bt)_{ij}$$

$$g(\lambda | b) = \eta = \log(\lambda | b)$$

$$\lambda = 7 \Rightarrow \eta \sim N(1.95, \sigma_b^2)$$



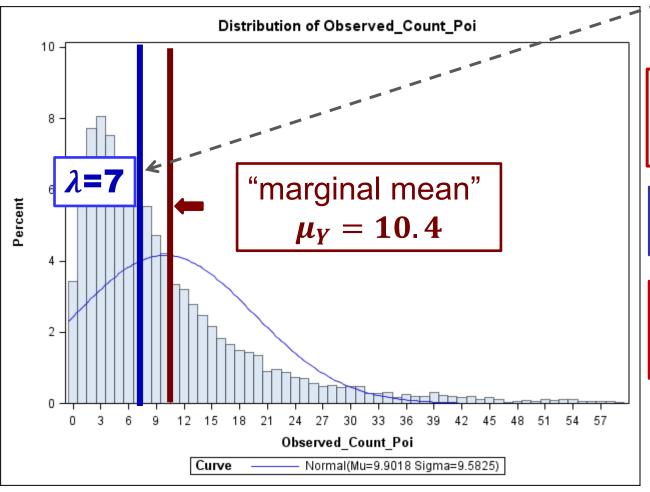


These distributions define the GLMM,

but you cannot observe either directly

Resulting Distribution of the Observations

 $block \sim N(0,0.8)$ $y \mid block \sim Poisson(\lambda = 7)$



classical ANOVA will target μ_Y overestimates λ

> **GLMM** will target the true *λ*

transformations ???? (somewhere in between?)

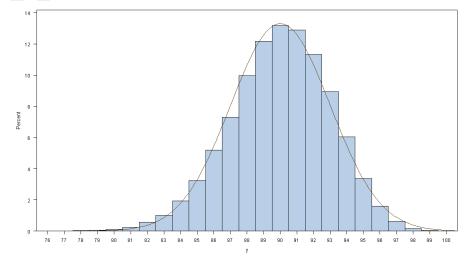
Same Issue Occurs with Binomial Data

- Example 2
- Paired Comparison, a.k.a. blocked design
- Two treatments, **B** blocks
- Response variable is Y "successes" out of N observations on given trt-block
- Hence $y_{ij}|b_i\sim \text{Binomial}(N_{ij},p_{ij})$ where p denotes probability of success

Normal Approximation – Isn't this okay?

$$\pi = 0.90$$

$$N = 100$$



$$N = 100$$
 therefore

$$N = 100$$
 therefore $Y_i / N \sim \text{approx } N \left(\pi, \frac{\pi(1-\pi)}{N} \right)$

ANOVA via LMM:
$$Y_i/N = p_i = \mu + \tau_i + b_j + e_i$$

Repurposed ANOVA to determine appropriate binomial GLMM

Combined		
Source	d.f.	
block	9	$b_j \sim N(0, \sigma_b^2)$
trt	1	
unit(block) trt a.k.a. "residual" a.k.a "block x trt"	10-1=9	$unit_{ij} \equiv bt_{ij} \sim N(0, \sigma_u^2)$
Total	19	

$$y_{ij}|b_j,bt_{ij}\sim Binomial(N_{ij},p_{ij})$$

resulting linear predictor

$$\eta_{ij} = logit(p_{ij})
= log \left(\frac{p_{ij}}{1 - p_{ij}}\right)
= \eta + \tau_i + b_j + bt_{ij}$$

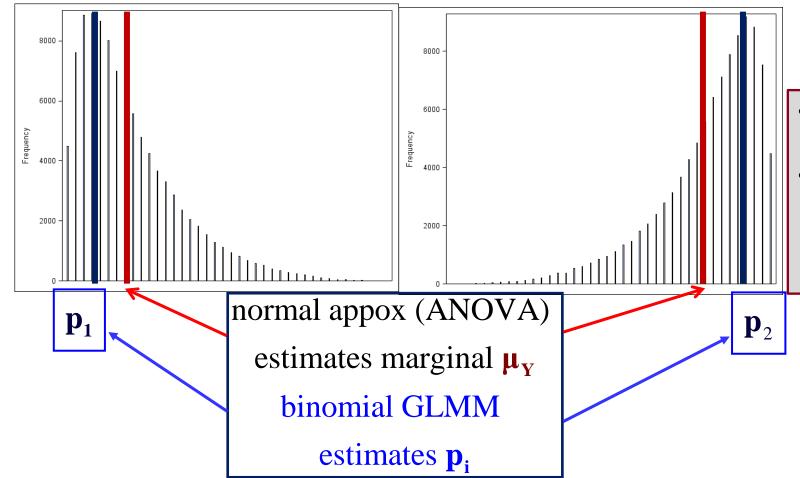
resulting estimate of p_i is $\frac{1}{1+exp[-(\widehat{\eta}+\widehat{\tau}_i)]}$

logistic inverse link

Consequence of Normal Approximation vs. GLMM

If *p*<0.5

If *p>0.5*



- IMPORTANT: what is your target & why?
- IF you get this wrong:
 - inaccurate estimates of
 p_i & odds-ratio
 - loss of power

List of examples

☐ Elizabeth will cover

- Example 11.5 in SAS for Mixed Models (Stroup, et al. 2018). Multi-center clinical trial with binomial data (from Beitler and Landis, Biometrics, 1985)
- Example 12.3 in SAS for Mixed Models. Manufacturing; data from multiple lots; response variable is number of micro-sites (discrete count). Random coefficient regression

☐ Also in SAS for Mixed Models (2018)

- Example 11.6. Estimate genetic parameters from count data
- Example 13.3. Split-plot (multi-level mixed model) with count data
- Example 13.4. Repeated measures (longitudinal data) with binomial data

□ Situations calling for GLMMs

- designs: blocks; matched pairs; multiple sources, batches, lots, locations, times; multi-level, split-plot; repeated measures; longitudinal all call for mixed model
- If, in addition, you have non-Gaussian response variable(s), then GLMM