For the latest version of JMP Help, visit

Basic Analysis > Bootstrapping
Publication date: 07/30/2020


Approximate the Distribution of a Statistic through Resampling

Bootstrapping is available only in JMP Pro.

Bootstrapping is a resampling method for approximating the sampling distribution of a statistic. You can use bootstrapping to estimate the distribution of a statistic and its properties, such as its mean, bias, standard error, and confidence intervals. Bootstrapping is especially useful in the following situations:

The theoretical distribution of the statistic is complicated or unknown.

Inference using parametric methods is not possible because of violations of assumptions.

Note: Bootstrap is available only from a right-click in a report. It is not a platform command.

Figure 11.1 Bootstrapping Results for a Slope Parameter 


Overview of Bootstrapping

Example of Bootstrapping

Bootstrapping Window Options

Stacked Results Table

Unstacked Bootstrap Results Table

Analysis of Bootstrap Results

Additional Example of Bootstrapping

Statistical Details for Bootstrapping

Calculation of Fractional Weights
Bias-Corrected Percentile Intervals
Want more information? Have questions? Get answers in the JMP User Community (